[1] 周幼吾. 中国冻土. 北京: 科学出版社, 2000 [2] Zhang TJ. Historical overview of permafrost studies in China. Physical Geography, 2005, 26: 279-298 [3] 彭小清, 田伟伟, 李璇佳, 等. 青藏高原和环北极冻土变化研究进展. 冰川冻土, 2023, 45(2): 521-534 [4] Chadburn SE, Burke EJ, Cox PM, et al. An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017, 7: 340-344 [5] Koven CD, Ringeval B, Friedlingstein P, et al. Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 14769-14774 [6] 焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征. 冰川冻土, 2014, 36(2): 237-247 [7] Smith SL, O’Neill HB, Isaksen K, et al. The changing thermal state of permafrost. Nature Reviews Earth & Environment, 2022, 3: 10-23 [8] 周天军, 邹立维, 吴波, 等. 中国地球气候系统模式研究进展: CMIP计划实施近20年回顾. 气象学报, 2014, 72(5): 892-907 [9] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述. 气候变化研究进展, 2019, 15(5): 445-456 [10] 牟翠翠, 张国飞, 效存德, 等. IPCC第六次评估报告解读: 多年冻土变化及其影响. 冰川冻土, 2023, 45(2): 306-317 [11] Mishra U, Riley WJ. Active-layer thickness across Ala-ska: Comparing observation-based estimates with CMIP5 Earth System Model predictions. Soil Science Society of America Journal, 2014, 78: 894-902 [12] Slater AG, Lawrence DM. Diagnosing present and future permafrost from climate models. Journal of Climate, 2013, 26: 5608-5623 [13] Yokohata T, Saito K, Takata K, et al. Model improvement and future projection of permafrost processes in a global land surface model. Progress in Earth and Planetary Science, 2020, 7: 69 [14] 周鑫原, 吕世华, 罗江鑫. CMIP6 BCC等模式对青藏高原土壤冻融模拟性能分析. 高原山地气象研究, 2022, 42(2): 82-89 [15] 胡桃, 吕世华, 常燕, 等. CMIP6模式对青藏高原多年冻土变化的分析预估. 高原气象, 2022, 41(2): 363-375 [16] Soong JL, Phillips CL, Ledna C, et al. CMIP5 models predict rapid and deep soil warming over the 21st cen-tury. Journal of Geophysical Research: Biogeosciences, 2020, 125: e2019JG005266 [17] Taylor KE. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 2001, 106: 7183-7192 [18] 李锐超, 谢瑾博, 谢正辉. 不同大气强迫作用下陆面模式CAS-LSM多年冻土活动层厚度模拟与不确定性研究. 气候与环境研究, 2021, 26(1): 31-44 [19] Burke EJ, Zhang Y, Krinner G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. The Cryosphere, 2020, 14: 3155-3174 [20] Magnússon RÍ, Hamm A, Karsanaev SV, et al. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nature Communications, 2022, 13: 1556 [21] Ziehn T, Chamberlain MA, Law RM, et al. The Australian Earth System Model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science, 2020, 70: 193-214 [22] Cai ZY, You QL, Chen HW, et al. Assessing Arctic wetting: Performances of CMIP6 models and projections of precipitation changes. Atmospheric Research, 2024, 297: 107124 [23] Zhou JZ, Zhang J, Huang YY. Evaluation of soil temperature in CMIP6 multimodel simulations. Agricultural and Forest Meteorology, 2024, 352: 110039 [24] Lawrence DM, Slater AG, Romanovsky VE, et al. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. Journal of Geophysical Research: Earth Surface, 2008, 113: F02011 [25] Luo DL, Wu QB, Jin HJ, et al. Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences, 2016, 75: 555 [26] 范雪薇, 缪驰远, 苟娇娇, 等. 国际耦合模式比较计划及其模拟能力研究进展. 地理科学进展, 2023, 42(6): 1204-1215 [27] 张廷军. 全球多年冻土与气候变化研究进展. 第四纪研究, 2012, 32(1): 27-38 [28] Wang XJ, Ran YH, Pang GJ, et al. Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole. Earth-Science Reviews, 2022, 230: 104042 [29] Guo DL, Wang HJ. CMIP5 permafrost degradation projection: A comparison among different regions. Journal of Geophysical Research: Atmospheres, 2016, 121: 4499-4517 [30] 彭惠, 魏尧, 袁堃, 等. 多年冻土公路路基水分迁移规律与成灾机制研究. 公路交通科技, 2023, 40(3): 42-50 [31] 牟翠翠. 热喀斯特改变多年冻土区景观和地表过程. 自然杂志, 2020, 42(5): 386-392 [32] Yuan QQ, Zhong W, Yang QQ, et al. Duration of frozen days show a strong decline in the Northern Hemisphere mainly driven by autumn temperature increase. The Innovation Geoscience, 2025, 3: 100118 [33] Peng XQ, Zhang TJ, Frauenfeld OW, et al. Active layer thickness and permafrost area projections for the 21st century. Earth’s Future, 2023, 11: e2023EF0-03573 [34] 刘广岳, 谢昌卫, 杨淑华. 青藏公路沿线多年冻土区活动层起始冻融时间的时空变化特征和影响因素. 冰川冻土, 2018, 40(6): 1067-1078 [35] Hu GJ, Zhao L, Wu TH, et al. Continued warming of the permafrost regions over the Northern Hemisphere under future climate change. Earth’s Future, 2022, 10: e2022EF002835 [36] 周晓宇, 赵春雨, 李娜, 等. 东北地区冬半年积雪与气温对冻土的影响. 冰川冻土, 2021, 43(4): 1027-1039 [37] Jiang RQ, Bai XF, Wang XH, et al. Effects of freeze-thaw cycles and the prefreezing water content on the soil pore size distribution. Water, 2024, 16: 14 [38] Yuan WP, Zheng Y, Piao SL, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5: eaax1396 [39] Domine F, Fourteau K, Picard G, et al. Permafrost cooled in winter by thermal bridging through snow-covered shrub branches. Nature Geoscience, 2022, 15: 554-560 [40] Walvoord MA, Kurylyk BL. Hydrologic impacts of thawing permafrost: A review. Vadose Zone Journal, 2016, 15: vzj2016.01.0010 [41] Boike J, Roth K, Overduin PP. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resources Research, 1998, 34: 355-363 [42] Clayton LK, Schaefer K, Battaglia MJ, et al. Active layer thickness as a function of soil water content. Environmental Research Letters, 2021, 16: 055028 [43] Loranty MM, Abbott BW, Blok D, et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences, 2018, 15: 5287-5313 [44] 杨堤益, 丁明虎, 邹小伟. 南极冰盖地表能量平衡的研究进展. 极地研究, 2021, 33(1): 99-114 [45] 白淑英, 史建桥, 沈渭寿, 等. 卫星遥感西藏高原积雪时空变化及影响因子分析. 遥感技术与应用, 2014, 29(6): 954-962 [46] McMahon TA, Peel MC, Lowe L, et al. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrology and Earth System Sciences, 2013, 17: 1331-1363 [47] 张明礼, 周志雄, 周凤玺, 等. 夏季降雨增加对多年冻土活动层水热状态的影响研究. 岩土力学, 2022, 43(12): 3335-3346 [48] 吕久俊, 李秀珍, 胡远满, 等. 呼中自然保护区多年冻土活动层厚度的影响因子分析. 生态学杂志, 2007, 26(9): 1369-1374 |