欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (6): 1690-1698.doi: 10.13287/j.1001-9332.202506.004

• 研究论文 • 上一篇    下一篇

六盘山华北落叶松液流速率对干旱类型的响应

刘铭1, 郭建斌1*, 林雪雯1, 于松平2, 白铭悦1, 陈生钢1   

  1. 1北京林业大学水土保持学院, 北京 100083;
    2西南林业大学水土保持学院, 昆明 650224
  • 收稿日期:2024-12-18 接受日期:2025-03-31 出版日期:2025-06-18 发布日期:2025-12-18
  • 通讯作者: *E-mail: jianbinguo@bjfu.edu.cn
  • 作者简介:刘 铭, 男, 2001年生, 硕士研究生。主要从事森林生态水文研究。E-mail: a15172127321@163.com
  • 基金资助:
    国家自然科学基金项目(32271959)、国家重点研发计划项目(2022YFF1300404)和宁夏自治区重点研发计划项目(2023BEG02049)

Response of sap flow of Larix principis-rupprechtii in Liupan Mountain to drought types

LIU Ming1, GUO Jianbin1*, LIN Xuewen1, YU Songping2, BAI Mingyue1, CHEN Shenggang1   

  1. 1College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
    2College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
  • Received:2024-12-18 Accepted:2025-03-31 Online:2025-06-18 Published:2025-12-18

摘要: 本研究以六盘山区香水河小流域华北落叶松林为对象,于2022年生长季(5月13日—9月30日)利用热扩散探针测定树干液流速率,并同步监测气象条件与土壤水分,探究不同干旱类型下华北落叶松林的水分利用规律。结果表明: 线性分段函数可以准确地反映树干液流速率随土壤相对有效含水率(REW)和饱和水汽压差(VPD)的变化规律,根据分段函数的阈值将该地区干旱情况划分为非干旱(REW≥0.37 m3·m-3,VPD<0.99 kPa)、大气干旱(REW≥0.37 m3·m-3,VPD>0.99 kPa)、土壤干旱(REW<0.37 m3·m-3,VPD<0.99 kPa)和综合干旱(REW<0.37 m3·m-3,VPD>0.99 kPa)4种类型。华北落叶松平均树干液流速率在大气干旱类型下最大(0.042 mL·cm-2·min-1),在土壤干旱类型下最小(0.022 mL·cm-2·min-1)。不同干旱类型下树干液流速率的主导因子不同。非干旱时,树干液流的主要影响因素为饱和水汽压差和太阳辐射;土壤干旱时,树干液流的主要影响因素为太阳辐射;而在大气干旱和综合干旱时,树干液流的主要影响因素为土壤相对有效含水率和太阳辐射。华北落叶松在面临干旱胁迫时会提前启动树干液流进行树干补水,其主要限制因子是土壤水分。

关键词: 华北落叶松林, 液流速率, 干旱类型, 环境因子, 木质部储水

Abstract: With Larix principis-rupprechtii forest in the Xiangshui River sub-basin of the Liupan Mountain area as test material, we monitored sap flow in L. principis-rupprechtii using the thermal diffusion probe during the growing season (from May 13th to September 30th) of 2022 and measured meteorological conditions and soil moisture to explore the water utilization patterns of L. principis-rupprechtii forest under different drought types. The results showed that the piecewise linear function could accurately reflect the variation of the sap flow rate with soil relative extractable water (REW) and vapor pressure deficit (VPD). Based on the thresholds of the piecewise function, the drought conditions in this area were classified into four types: non-drought (REW≥0.37 m3·m-3, VPD<0.99 kPa), atmospheric drought (REW≥0.37 m3·m-3, VPD>0.99 kPa), soil drought (REW<0.37 m3·m-3, VPD<0.99 kPa), and combined drought (REW<0.37 m3·m-3, VPD>0.99 kPa). The average sap flow rate of L. principis-rupprechtii was the highest under atmospheric drought (0.042 mL·cm-2·min-1) and the lowest under soil drought (0.022 mL·cm-2·min-1). The dominant factors influencing the sap flow rate varied across drought types. Under non-drought types, the dominant factors of sap flow were VPD and solar radiation (Rs). Under soil drought, the main influencing factor of sap flow was Rs. Under atmospheric drought and combined drought, the main influencing factors of sap flow were REW and Rs. When facing drought stress, L. principis-rupprechtii would initiate trunk sap flow earlier for trunk water replenishment, with soil moisture as the main limiting factor.

Key words: Larix principis-rupprechtii forest, sap flow, drought type, environmental factor, xylem water storage