[1] Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515: 505-511 [2] Hisano M, Searle EB, Chen HYH. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews, 2018, 93: 439-456 [3] Lefcheck JS, Byrnes JEK, Isbell F, et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 2015, 6,DOI: 10.1038/ncomms7936 [4] Gross N, Le Bagousse-Pinguet Y, Liancourt P, et al. Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 2017, 1, DOI: 10.1038/s41559-017-0132 [5] Manning P, van der Plas F, Soliveres S, et al. Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2018, 2: 427-436 [6] 徐炜, 井新, 马志远, 等. 生态系统多功能性的测度方法. 生物多样性, 2016, 24(1): 72-84 [7] Jing X, Prager CM, Borer ET, et al. Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial β-diversity. Ecosphere, 2021, 12, DOI: 10.1002/ecs2.3644 [8] Martinez-Almoyna C, Thuiller W, Chalmandrier L, et al. Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 2019, 33: 2053-2064 [9] van der Plas F, Manning P, Soliveres S, et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 3557-3562 [10] Cui HW, Chen SY, Song HX, et al. Contrasting mechanisms of non-vascular and vascular plants on spatial turnover in multifunctionality in the Antarctic continent. Journal of Ecology, 2024, 112: 1624-1637 [11] 张世航, 陶冶, 陈玉森, 等. 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素. 生物多样性, 2022, 30(8): 140-150 [12] 李志丽, 王红梅, 赵亚楠, 等. 荒漠草原灌丛引入过程中土壤氮矿化的季节动态及其影响因子. 应用生态学报, 2023, 34(8): 2161-2170 [13] Wang XS, Michalet R, He S, et al. The subalpine shrub Dasiphora fruticosa alters seasonal and elevational effects on soil microbial diversity and ecosystem functions on the Tibetan Plateau. Journal of Applied Ecology, 2023, 60: 52-63 [14] Chandregowda MH, Murthy K, Bagchi S. Woody shrubs increase soil microbial functions and multifunctionality in a tropical semi-arid grazing ecosystem. Journal of Arid Environments, 2018, 155: 65-72 [15] Wang K, Xue K, Liu WJ, et al. Warming decouples associations between microbial network complexity and ecosystem multifunctionality in alpine grasslands. Agriculture, Ecosystems & Environment, 2024, 374: 109189 [16] 樊永帅, 杨哲, 刘思奇, 等. 增温增雪和放牧对青藏高原高寒草甸土壤细菌群落的影响. 草地学报, 2024, 23(6): 1-18 [17] 周天军, 张文霞, 陈晓龙, 等. 青藏高原气温和降水近期、中期与长期变化的预估及其不确定性来源. 气象科学, 2020, 40(5): 697-710 [18] 姬秀云, 李美慧, 拓行行, 等. 宁夏云雾山典型草原灌丛化过程中植被和土壤演变特征. 西北植物学报, 2023, 43(11): 1920-1930 [19] 刘美, 马志良. 模拟增温对青藏高原东部高寒灌丛土壤氮转化的影响. 应用生态学报, 2021, 32(6): 2045-2052 [20] Chen JG, He XF, Wang SW, et al. Cushion and shrub ecosystem engineers contribute differently to diversity and functions in alpine ecosystems. Journal of Vegetation Science, 2019, 30: 362-374 [21] Kim JM, Roh AS, Choi SC, et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. Journal of Microbiology, 2016, 54: 838-845 [22] Almeida-Neto M, Guimaraes P, Guimaraes PR, et al. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 2008, 117: 1227-1239 [23] Delgado-Baquerizo M, Trivedi P, Trivedi C, et al. Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 2017, 31: 2330-2343 [24] Yang Y, Chai YB, Xie HJ, et al. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes. Science of the Total Environment, 2023, 859: 160255 [25] Lai JS, Zou Y, Zhang JL, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 2022, 13: 782-788 [26] Qiu LP, Kong WB, Zhu HS, et al. Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. Science of the Total Environment, 2022, 831: 154944 [27] Zhao X, Cui HW, Song HX, et al. Contrasting responses of α- and β-multifunctionality to aboveground plant community in the Qinghai-Tibet Plateau. Science of the Total Environment, 2024, 917: 170464 [28] Jiang YL, Lei YB, Yang Y, et al. Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence. Soil Biology & Biochemistry, 2018, 118: 207-216 [29] Habtewold JZ, Helgason BL, Yanni SF, et al. Warming effects on the structure of bacterial and fungal communities in diverse soils. Applied Soil Ecology, 2021, 163: 103973 [30] Delgado-Baquerizo M, Giaramida L, Reich PB, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. Journal of Ecology, 2016, 104: 936-946 [31] Sasaki T, Ishii NI, Makishima D, et al. Plant and microbial community composition jointly determine moorland multifunctionality. Journal of Ecology, 2022, 110: 2507-2521 [32] Wang XD, Wu WA, Ao GKL, et al. Minor effects of warming on soil microbial diversity, richness and community structure. Global Change Biology, 2025, 31,DOI: 10.1111/gcb.70104 [33] Lan GY, Wu ZX, Yang C, et al. Forest conversion alters the structure and functional processes of tropical forest soil microbial communities. Land Degradation & Development, 2021, 32: 613-627 [34] Ding JY, Eldridge DJ. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena, 2021, 201: 105233 [35] Yang Z, Meng LH, Liu ZY, et al. Warming enhances the negative effects of shrub removal on phosphorus mineralization potential. Science of the Total Environment, 2024, 924, DOI:10.1016/j.scitotenv.2024.171517 [36] 唐蛟, 殷金忠, 潘飞飞, 等. 生态恢复中灌丛保育效应研究进展. 应用生态学报, 2022, 33(8): 2279-2285 |