[1] Elser JJ, Sterner RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3: 540-550 [2] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947 [3] 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637 [4] 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展. 应用与环境生物学报, 2017, 23(2): 400-408 [5] IPCC. Climate Change 2021: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2021 [6] Deng NY, Grassini P, Yang HS, et al. Closing yield gaps for rice self-sufficiency in China. Nature Communications, 2019, 10: 1725 [7] 吴金水, 李勇, 童成立, 等. 亚热带水稻土碳循环的生物地球化学特点与长期固碳效应. 农业现代化研究, 2018, 39(6): 895-906 [8] 祝贞科, 肖谋良, 魏亮, 等. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策. 中国生态农业学报, 2022, 30(4): 592-602 [9] 刘文亭, 卫智军, 吕世杰, 等. 中国草原生态化学计量学研究进展. 草地学报, 2015, 23(5): 914-926 [10] 李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 2017, 54(1): 160-170 [11] 谢杨阳, 刘旭阳, 金强, 等. 福州东湖湿地不同生境土壤碳氮磷及其生态化学计量比特征. 中国水土保持科学, 2023, 21(4): 79-90 [12] Ferreira V, Goncalves AL, Godbold DL, et al. Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality. Global Change Biology, 2010, 16: 3284-3296 [13] Zhang SB, Zhang JL, Slik JWF, et al. Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Eco-logy and Biogeography, 2012, 21: 809-818 [14] Zhang JY, Li YS, Yu ZH, et al. Elevated atmospheric CO2 and warming enhance the acquisition of soil-derived nitrogen rather than urea fertilizer by rice cultivars. Agricultural and Forest Meteorology, 2022, 324: 109117 [15] 余洪艳, 孙梅, 冯春慧, 等. 水葱和香蒲叶经济性状对模拟增温和CO2浓度倍增的响应. 广西植物, 2023, 43(9): 1588-1599 [16] 房蕊, 于镇华, 李彦生, 等. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响. 中国农业科学, 2021, 54(17): 3666-3679 [17] Ofiti NOE, Solly EF, Hanson PJ, et al. Warming and elevated CO2 promote rapid incorporation and degradation of plant-derived organic matter in an ombrotrophic peatland. Global Change Biology, 2022, 28: 883-898 [18] Fang R, Li YS, Yu ZH, et al. Warming offsets the beneficial effect of elevated CO2 on maize plant-carbon accumulation in particulate organic carbon pools in a Mollisol. Catena, 2022, 213: 106219 [19] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000 [20] 张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响. 环境科学, 2013, 34(1): 277-282 [21] Yang YJ, Liu HX, Lv JL. Evaluation of the applicability of organic amendments from microbially driven carbon and nitrogen transformations. Science of the Total Environment, 2022, 817: 153020 [22] Zhu CW, Xu X, Wang D, et al. Elevated atmospheric[CO2] stimulates sugar accumulation and cellulose de-gradation rates of rice straw. Global Change Biology Bioenergy, 2016, 8: 579-587 [23] Wan S, Norby RJ, Ledford J, et al. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 2007, 13: 2411-2424 [24] Liu HY, Mi ZR, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4051-4056 [25] Zosso CU, Ofiti NOE, Torn MS, et al. Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming. Nature Geoscience, 2023, 16: 344-348 [26] Black CK, Davis SC, Hudiburg TW, et al. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem. Global Change Biology, 2017, 23: 435-445 [27] Carrillo Y, Dijkstra F, LeCain D, et al. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecology Letters, 2018, 21: 1639-1648 [28] Ma F, Li YC, Liu Y, et al. Elevated atmospheric CO2 promotes the contribution of autotrophic nitrification to N2O emissions in a typical summer maize field. European Journal of Agronomy, 2024, 153: 127041 [29] Liu J, Appiah-Sefah G, Apreku TO. Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands. Water Science and Engineering, 2018, 11: 39-45 [30] Zhang JY, Yu ZH, Li YS, et al. Co-elevation of CO2 and temperature enhances nitrogen mineralization in the rhizosphere of rice. Biology and Fertility of Soils, 2024, 60: 729-741 [31] Dai ZM, Yu MJ, Chen HH, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Bio-logy, 2020, 26: 5267-5276 [32] Vitousek PM, Porder S, Houlton BZ, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20: 5-15 [33] Deng MF, Liu LL, Sun ZZ, et al. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations. New Phytologist, 2016, 212: 1019-1029 [34] Wang Y, Huang YY, Song L, et al. Reduced phosphorus availability in paddy soils under atmospheric CO2 enrichment. Nature Geoscience, 2023, 16: 162-168 [35] Jin J, Krohn C, Franks AE, et al. Elevated atmospheric CO2 alters the microbial community composition and metabolic potential to mineralize organic phosphorus in the rhizosphere of wheat. Microbiome, 2022, 10: 12 [36] Tian Y, Shi CP, Malo CU, et al. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses. Nature Communications, 2023, 14: 864 [37] 宋鸽, 王全成, 郑勇, 等. 丛枝菌根真菌对大气CO2浓度升高和增温响应研究进展. 应用生态学报, 2022, 33(6): 1709-1718 [38] Tian J, Zong N, Hartley IP, et al. Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology, 2021, 27: 2011-2028 [39] Liu LF, Chen H, Jiang L, et al. Response of anaerobic mineralization of different depths peat carbon to warming on Zoige plateau. Geoderma, 2019, 337: 1218-1226 [40] Wan LF, Liu GH, Cheng H, et al. Global warming changes biomass and C:N:P stoichiometry of different components in terrestrial ecosystems. Global Change Biology, 2023, 29: 7102-7116 [41] Sun Y, Wang CT, Chen HYH, et al. A global meta-analysis on the responses of C and N concentrations to warming in terrestrial ecosystems. Catena, 2022, 208: 105762 [42] Gong SW, Zhang T, Guo JX. Warming and nitrogen addition change the soil and soil microbial biomass C:N:P stoichiometry of a meadow steppe. International Journal of Environmental Research and Public Health, 2019, 16: 2705 [43] Su YQ, Wu ZL, Xie PY, et al. Warming effects on topsoil organic carbon and C:N:P stoichiometry in a subtropical forested landscape. Forests, 2020, 11: 66 [44] 秦海龙, 付旋旋, 卢瑛, 等. 广西猫儿山不同海拔土壤碳氮磷生态化学计量特征. 应用生态学报, 2019, 30(3): 711-717 [45] Wu GL, Gao JY, Li HL, et al. Shifts in plant and soil C, N, and P concentrations and C:N:P stoichiometry associated with environmental factors in alpine marshy wetlands in West China. Catena, 2023, 221: 106801 [46] 张晗, 欧阳真程, 赵小敏. 不同利用方式对江西省农田土壤碳氮磷生态化学计量特征的影响. 环境科学学报, 2019, 39(3): 939-951 |