欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (12): 3409-3418.doi: 10.13287/j.1001-9332.202412.013

• 研究论文 • 上一篇    下一篇

稻田土壤碳氮磷含量及其生态化学计量特征对大气CO2浓度升高和增温的响应

范亚冉1, 于冰冰1, 夏少攀1,2*, 朱紫琪1, 范豫川3, 刘晓雨1,2, 张旭辉1,2, 郑聚锋1,2   

  1. 1南京农业大学资源与环境科学学院, 农业资源与生态环境研究所, 南京 210095;
    2江苏省有机固体废弃物资源化协同创新中心, 南京 210095;
    3佛罗里达大学土壤、水和生态系统科学系, 美国佛罗里达州盖恩斯维尔 32603
  • 收稿日期:2024-05-10 接受日期:2024-10-14 出版日期:2024-12-18 发布日期:2025-06-18
  • 通讯作者: *E-mail: shaopanxia@njau.edu.cn
  • 作者简介:范亚冉, 女, 2000年生, 硕士研究生。主要从事稻田土壤有机碳周转研究。E-mail: fanyayana@163.com
  • 基金资助:
    江苏省自然科学青年基金项目(BK20221028)和国家自然科学青年基金项目(42303078)

Responses of the contents and stoichiometry of soil carbon, nitrogen, and phosphorus to elevated atmospheric CO2 concentration and warming in paddy field

FAN Yaran1, YU Bingbing1, XIA Shaopan1,2*, ZHU Ziqi1, FAN Yuchuan3, LIU Xiaoyu1,2, ZHANG Xuhui1,2, ZHENG Jufeng1,2   

  1. 1Institute of Resource, Ecosystem and Environment of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;
    2Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China;
    3Department of Soil, Water, and Ecosystem Sciences, University of Florida-IFAS, Gainesville 32603, Florida, USA
  • Received:2024-05-10 Accepted:2024-10-14 Online:2024-12-18 Published:2025-06-18

摘要: 研究大气CO2浓度升高和增温对稻田土壤有机碳(SOC)、总氮(TN)、总磷(TP)及其生态化学计量比的影响及机制,对理解气候变化下稻田生态系统功能具有重要意义。本研究以T-FACE气候变化平台为依托,共设置4个处理:正常环境条件(CK);CO2浓度600 μmol·mol-1;冠层升温2 ℃;CO2浓度600 μmol·mol-1和冠层升温2 ℃,测定了SOC、TN、TP、土壤有机碳组分、土壤容重、土壤含水量和粒径组成,运用方差分析和Pearson相关性分析方法探究气候和土壤理化性质对SOC、TN、TP含量及其生态化学计量特征的影响机制。结果表明: 与CK相比,大气CO2浓度升高提高了SOC、TN和TP的积累量。增温导致SOC积累损失,促进了TN积累,对TP积累没有影响。大气CO2浓度和气温协同增加对SOC、TN和TP的影响更接近单一增温的影响,表明增温对土壤碳氮磷的影响大于大气CO2浓度升高。大气CO2浓度升高和增温总体上导致0~100 cm剖面土壤C/N、C/P和C/N/P值下降,说明气候变化不利于土壤有机碳的稳定性和埋藏潜力。SOC、TN、TP及生态化学计量比与碳组分、土壤含水量呈正相关,与土壤容重呈负相关,与粒径组成没有相关性。0~30 cm土层土壤化学计量特征(SOC、TN和C/P)与CO2浓度的关系较为密切,而30~100 cm土层土壤化学计量特征(SOC、TP、C/N和C/P)与增温的关系较为密切,表明稻田表层和底层土壤化学计量特征对气候变化的响应机制不尽相同。

关键词: 稻田, 土壤剖面, 碳氮磷, 生态化学计量, 大气CO2浓度升高, 增温

Abstract: To study the effects of elevated atmospheric CO2 concentration and warming on the contents and stoichio-metry of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) in paddy field is of great significance for understanding the functions of paddy ecosystem under climate change. Based on the T-FACE platform, we conducted an experiment with four treatments: ambient conditions (CK); elevated atmospheric CO2 concentration up to 600 μmol·mol-1; warming of canopy air by 2 ℃ over ambient; elevated atmospheric CO2 concentration up to 600 μmol·mol-1 combined with warming of canopy air by 2 ℃ over ambient. The contents of SOC, TN, TP, soil organic carbon composition, soil bulk density (BD), soil water content (SWC) and particle size composition were measured. Using variance analysis and Pearson correlation analysis, we explored the influencing mechanisms of climate change and soil physicochemical properties on the contents and stoichiometry of SOC, TN, and TP. The results showed that elevated atmospheric CO2 concentration increased the accumulation of SOC, TN, and TP. Warming caused the loss of SOC accumulation, promoted TN accumulation, with limited effect on TP accumulation. The effects of combined elevated atmospheric CO2 concentration and warming on SOC, TN, and TP were in line with the effects of single warming treatment, indicating that warming had greater impacts on SOC, TN and TP than elevated atmospheric CO2 concentration. Elevated atmospheric CO2 concentration and warming overall decreased soil C/N, C/P and C/N/P values in the 0-100 cm layer, indicating that climate change was not conducive to the stability and burial potential of SOC. The contents and stoichiometry of SOC, TN, and TP were positively correlated with organic carbon components and soil water content, negatively correlated with bulk density, and not correlated with particle size composition. The relationships between soil stoichiometry characteristics (e.g., SOC, TN, and C/P) in the 0-30 cm layer and elevated atmospheric CO2 concentration were relatively close, while that between soil stoichiometry characteristics (e.g., SOC, TP, C/N, and C/P) in the 30-100 cm layer and warming were relatively close, indicating that the response mechanisms of soil stoichiometry to climate change differed for topsoil and subsoil in paddy field.

Key words: paddy filed, soil profile, carbon, nitrogen and phosphorus, ecological stoichiometry, elevated atmospheric CO2 concentration, warming