[1] Li P, Ying D, Li J, et al. Global-scale no-tillage impacts on soil aggregates and associated carbon and nitrogen concentrations in croplands: A meta-analysis. Science of the Total Environment, 2023, 881: 163570 [2] Abbey FW, Lachlan JI, Peter DS. Aggregate and orga-nic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biology and Biochemistry, 2009, 41: 201-209 [3] 隋鹏祥, 罗洋, 郑洪兵, 等. 长期耕作对农田黑土团聚体和有机碳稳定性的影响. 应用生态学报, 2023, 34(7): 1853-1861 [4] Das S, Bhattacharyya R, Saha ND, et al. Soil aggregate-associated carbon and organic carbon pools as affected by conversion of forest lands to agriculture in an acid soil of India. Soil & Tillage Research, 2022, 223: 105443 [5] Jiang WS, Li ZW, Xie HX, et al. Land use change impacts on red slate soil aggregates and associated organic carbon in diverse soil layers in subtropical China. Science of the Total Environment, 2023, 856: 159194 [6] Devine S, Markewitz D, Hendrix P, et al. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three de-cades. PLoS One, 2014, 9: e84988 [7] Guan S, An N, Zong N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2018, 116: 224-236 [8] 唐贤, 黄伟濠, 卢瑛, 等. 广东省赤红壤区土壤团聚体有机碳和铁氧化物特征及稳定性. 水土保持学报, 2021, 35(2): 200-209 [9] 王超, 熊凡, 卢瑛, 等. 利用方式对珠江三角洲耕层土壤团聚体分布及碳氮磷化学计量特征的影响. 农业资源与环境学报, 2021, 38(3): 494-501 [10] 舒韦维, 卢立华, 李华, 等. 林分密度对杉木人工林林下植被和土壤性质的影响. 生态学报, 2021, 41(11): 4521-4530 [11] 刘悦, 谢玲芝, 张彦东, 等. 不同密度水曲柳人工林细根生物量对邻近树木胸径和距离的响应. 林业科学, 2021, 57(10): 15-22 [12] Bradford JB, D’Amato AW. Recognizing trade-offs in multi-objective land management. Frontiers in Ecology and the Environment, 2012, 10: 210-216 [13] 彭信浩, 韩海荣, 徐小芳, 等. 间伐和改变凋落物输入对华北落叶松人工林土壤呼吸的影响. 生态学报, 2018, 38(15): 5351-5361 [14] Wang CQ, Xue L, Dong YH, et al. Soil organic carbon fractions, C-cycling hydrolytic enzymes, and microbial carbon metabolism in Chinese fir plantations. Science of the Total Environment, 2020, 758: 143695 [15] 柯琴, 赵隽宇, 覃祚玉, 等. 人工林土壤团聚体稳定性及影响因素. 世界林业研究, 2024, 37(6): 33-39 [16] 国家林业局. LY/T 1213-1239—1999 森林土壤分析方法. 北京: 中国标准出版社, 1999 [17] Kong JQ, He ZB, Chen LF, et al. Elevational gradients and distributions of aggregate associated organic carbon and nitrogen and stability in alpine forest ecosystems. Soil Science Society of America Journal, 2020, 84: 1971-1982 [18] Gao GN, Huang XM, Xu HC, et al. Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China. Forest Ecosystems, 2022, 9: 100078 [19] Tripathi SK, Kushwaha CP, Singh KP. Tropical forest and savanna ecosystems show differential impact of N and P additions on soil organic matter and aggregate structure. Global Change Biology, 2008, 14: 2572-2581 [20] 周娅, 陈宇轩, 邹瑞, 等. 北京八达岭不同密度油松土壤团聚体特征研究. 西南林业大学学报, 2016, 36(2): 25-30 [21] 任丽娜, 王海燕, 丁国栋, 等. 林分密度对华北土石山区油松人工林土壤有机碳及养分特征的影响. 干旱区地理, 2012, 35(3): 456-464 [22] 刘玲, 王海燕, 杨晓娟, 等. 不同密度长白落叶松天然林土壤有机碳及养分特征. 东北林业大学学报, 2013, 41(2): 51-55 [23] 侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价. 水土保持学报, 2019, 33(2): 251-257 [24] Eynard A, Schumacher TE, Lindstrom MJ, et al. Aggregate sizes and stability in cultivated South Dakota prairie Ustolls and Usterts. Soil Science Society of America Journal, 2004, 68: 1360-1365 [25] 陈帅, 孙涛. 松嫩草地不同退化阶段的土壤团聚体稳定性. 草业科学, 2017, 34(2): 217-223 [26] 陈丽梅. 人参生长的土壤理化环境及生长模型的研究. 博士论文. 长春: 吉林大学, 2007 [27] Wang XT, Sun L, Zhao NN, et al. Multifractal dimensions of soil particle size distribution reveal the erodibility and fertility of alpine grassland soils in the Northern Tibet Plateau. Journal of Environmental Management, 2022, 315: 115145 [28] 陈宇轩, 张飞岳, 高广磊, 等. 科尔沁沙地樟子松人工林土壤粒径分布特征. 干旱区地理, 2020, 43(4): 1051-1058 [29] Lucas-Borja ME, Hedo J, Cerdá D, et al. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp. salzmannii) forest. Science of the Total Environment, 2016, 562: 145-154 [30] 刘少华, 赵敏, 王亚娟, 等. 黄土丘陵区林分密度对人工刺槐林土壤理化性质及酶活性影响. 水土保持研究, 2024, 31(5): 123-129, 138 [31] Selig MF, Seiler JR, Tyree MC. Soil carbon and CO2 efflux as influenced by the thinning of loblolly pine (Pinus taeda L.) plantations on the Piedmont of Virginia. Forest Science, 2008, 54: 58-66 [32] 程慎玉, 张宪洲. 土壤呼吸中根系与微生物呼吸的区分方法与应用. 地球科学进展, 2003, 18(4): 597-602 [33] 马亚峰, 侯银, 张焕朝. 杨树不同林分密度和林分结构对土壤理化性质的影响. 江苏农业科学, 2018, 46(22): 131-136 [34] Zhang SH, Pan Y, Zhou ZH, et al. Resource limitation and modeled microbial metabolism along an elevation gradient. Catena, 2021, 209: 105807 [35] 阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N∶P化学计量特征. 植物生态学报, 2008, 32(1): 13-22 [36] 杨晓娟, 王海燕, 刘玲, 等. 东北过伐林区不同林分类型土壤肥力质量评价研究. 生态环境学报, 2012, 21(9): 1553-1560 [37] 倪惠菁, 苏文会, 范少辉, 等. 养分输入方式对森林生态系统土壤养分循环的影响研究进展. 生态学杂志, 2019, 38(3): 863-872 [38] 秦娟, 唐心红, 杨雪梅. 马尾松不同林型对土壤理化性质的影响. 生态环境学报, 2013, 22(4): 598-604 [39] 于佳鑫. 山西太岳山华北落叶松人工林土壤团聚体稳定性及养分分布特征. 硕士论文. 北京: 北京林业大学, 2019 [40] Six J, Elliott ET, Paustian K. Soil structure and soil organic matter. Ⅱ. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 2000, 64: 1042-1049 [41] Sinsabaugh RL, Hill BH, Shah JJF. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798 [42] 莫雪青, 肖纳, 谭许脉, 等. 固氮树种对桉树人工林土壤团聚体酶活性及其化学计量比的影响. 广西植物, 2022, 42(4): 569-579 [43] Hobley EU, Baldock J, Wilson B. Environmental and human influences on organic carbon fractions down the soil profile. Agriculture, Ecosystems and Environment, 2016, 223: 152-166 [44] Li QQ, Li AW, Dai TF, et al. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. Global Change Biology, 2020, 26: 4134-4146 |