[1] 吴傲淼, 洪宗文, 游成铭, 等. 华西雨屏区不同林龄柳杉人工林土壤团聚体碳氮磷化学计量特征. 应用生态学报, 2024, 35(9): 2518-2526 [2] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 2004, 79: 7-31 [3] Zhao D, Xu MX, Liu GB, et al. Effect of vegetation type on microstructure of soil aggregates on the Loess Plateau, China. Agriculture, Ecosystems & Environment, 2017, 242: 1-8 [4] 尹国强, 胡颂江, 蓝诗霞, 等. 森林土壤团聚体影响因素及生态功能研究进展. 云南大学学报: 自然科学版, 2023, 45(6): 1340-1348 [5] Wei XH, Blanco JA.Significant increase in ecosystem C can be achieved with sustainable forest management in subtropical plantation forests. PLoS One, 2014, 9(2):e89688 [6] Wei K, Chen ZH, Zhang XP,et al.Tillage effects on phosphorus composition and phosphatase activities in soil aggregates. Geoderma, 2014, 217-218: 37-44 [7] Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 2014, 68: A4-A9 [8] 王心怡, 周聪, 冯文瀚, 等. 不同林龄杉木人工林土壤团聚体及其有机碳变化特征. 水土保持学报, 2019, 33(5): 126-131 [9] 张芸, 李惠通, 魏志超, 等. 不同发育阶段杉木人工林土壤有机质特征及团聚体稳定性. 生态学杂志, 2016, 35(8): 2029-2037 [10] Shi K, Liao JH, Zou XM, et al. Forest development induces soil aggregate formation and stabilization: Implications for sequestration of soil carbon and nitrogen. Catena, 2024, 246: 108363 [11] 白晓雄, 李妍, 胡斯乐, 等. 林龄对刺槐人工林土壤团聚体、有机碳和细菌群落的影响. 生态学报, 2024, 44(12): 5259-5268 [12] Wu JL, Zha RB, Zha X, et al. Regulatory mechanism of soil and water conservation measures on understorey erosion in a subtropical hilly region. Catena, 2024, 246: 108427 [13] 陈会玲, 勾蒙蒙, 刘常富, 等. 鄂中丘陵区不同林龄马尾松人工林林下植物多样性与土壤理化性质关系. 生态环境学报, 2024, 33(10): 1525-1533 [14] 胡建文, 刘常富, 勾蒙蒙, 等. 林龄对马尾松人工林微生物残体碳积累的影响机制. 应用生态学报, 2024, 35(1): 153-160 [15] 周琳, 杜敏, 杨晓楠, 等. 黄土高原沟壑区土壤理化性质对不同植被结构的响应. 林业与生态科学, 2025, 40(2): 182-188 [16] Zeng QC, Dong YH, An SS. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau, China. PLoS One, 2016, 11(4): e0152894 [17] Bremner JM. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, 1960, 55: 11-33 [18] Parkinson JA, Allen SE. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Communications in Soil Science & Plant Analysis, 2009, 6: 1-11 [19] Bilias F, Barbayiannis N. Potassium availability: An approach using thermodynamic parameters derived from quantity-intensity relationships. Geoderma, 2019, 338: 355-364 [20] Callesen I, Keck, H, Andersen TJ. Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000: Method uncertainty including the effect of hydrogen peroxide pretreatment. Journal of Soils and Sediments, 2018, 18: 2500-2510 [21] Hu JW, Liu CF, Gou MM, et al. Contrasting change patterns of lignin and microbial necromass carbon and the determinants in a chronosequence of subtropical Pinus massoniana plantations. Applied Soil Ecology, 2024, 198: 105385 [22] 赵双, 张涛, 石连旋, 等. 模拟增温和施氮条件下丛枝菌根真菌对草甸草原土壤团聚体稳定性和土壤碳储量的影响. 中国草地学报, 2021, 43(9): 97-106 [23] Bossio DA, Scow KM. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 1998, 35: 265-278 [24] Dou YX, Yang Y, An SS, et al. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena, 2019, 185: 104294 [25] 刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾.水土保持学报, 2020, 34(3): 267-273 [26] 童晨晖, 王辉, 谭帅, 等. 亚热带丘岗区经果林种植对红壤团聚体稳定性的影响. 应用生态学报, 2022, 33(4): 1012-1020 [27] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643 [28] Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 1997, 79: 439-449 [29] Gustafson FG. Decomposition of the leaves of some forest trees under field conditions. Plant Physiology, 1943, 18: 704-707 [30] 胡建文, 刘常富, 勾蒙蒙, 等. 马尾松人工林土壤有机碳及其组分对林龄的响应及驱动因素. 林业科学, 2025, 61(6): 75-84 [31] 张康, 黄开栋, 赵小军, 等. 修枝对杨树人工林林内小气候及林下植被的短期效应. 生态环境学报, 2019, 28(8): 1548-1556 [32] 黄子轩, 黄钰涵, 韦娟, 等. 降雨强度与初始水分对红壤大团聚体溅蚀特性的影响. 水土保持通报, 2025, 45(2): 30-37 [33] 曹尤淞, 张晨晖, 肖波, 等. 黑土区农田藻藓两类结皮发育对土壤团聚体稳定性和击溅侵蚀的影响. 应用生态学报, 2023, 34(4): 892-902 [34] 郑兴波, 张雪, 韩士杰. 长白山阔叶红松林不同演替阶段土壤团聚体粒径组成及有机碳含量变化. 应用生态学报, 2019, 30(5): 1553-1562 [35] 刘艳, 唐亚福, 杨越超, 等. 大颗粒活化腐植酸肥对苹果土壤团聚体和有机碳的影响. 应用生态学报, 2022, 33(4): 1021-1026 [36] 黎宏祥, 王彬, 王玉杰, 等. 不同林分类型对土壤团聚体稳定性及有机碳特征的影响. 北京林业大学学报, 2016, 38(5): 84-91 [37] 吴其聪, 张丛志, 张佳宝, 等. 不同施肥及秸秆还田对潮土有机质及其组分的影响. 土壤, 2015, 47(6): 6 [38] 彭新华, 张斌, 赵其国. 红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响. 生态学报, 2003, 23(10): 2176-2183 [39] 朱建华, 田宇, 李奇, 等. 中国森林生态系统碳汇现状与潜力. 生态学报, 2023, 43(9): 3442-3457 [40] Zhu JX, Hu HF, Tao SL, et al. Carbon stocks and changes of dead organic matter in China’s forests. Nature Communications, 2017, 8: 151 [41] 郭嘉龙, 张丽仙, 杨丽, 等. 不同发育阶段杉木凋落物分解过程中难分解物质的动态特征. 江西农业大学学报, 2024, 46(6): 1488-1497 [42] 及利, 杨立学. 采煤沉陷区不同造林树种恢复土壤酚酸物质对土壤微生物的影响. 应用生态学报, 2017, 28(12): 4017-4024 [43] 赵金金, 黄显怀, 钱婧. 酸雨对土壤有机碳转化和固持的研究进展. 安徽建筑大学学报, 2021, 29(4): 52-57 [44] 程永毅, 李忠意, 白颖艳, 等. 电渗析法研究紫色土、黄壤和砖红壤的酸化特征. 中国农业科学, 2018, 51(7): 1325-1333 [45] Siddharth T, Sridhar P, Vinila V, et al. Environmental applications of microbial extracellular polymeric substance (EPS): A review. Journal of Environmental Management, 2021, 287: 112307 [46] Flemming HC, Hullebusch EDV, Little BJ, et al. Microbial extracellular polymeric substances in the environment, technology and medicine. Nature Reviews Microbiology, 2025, 23: 87-105 [47] Christensen BT. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 2010, 52: 345-353 |