[1] 王兵, 牛香, 宋庆丰. 基于全口径碳汇监测的中国森林碳中和能力分析. 环境保护, 2021, 49(16): 30-34 [2] 高红, 王小红, 吴东梅, 等. 碳氮有效性对亚热带人工林土壤微生物呼吸及其代谢响应的影响. 应用生态学报, 2024, 35(8): 2025-2034 [3] Peng Q, Dong YS, Qi YC, et al. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia, China. Environmental Earth Sciences, 2011, 62: 1163-1171 [4] Huang XZ, Ibrahim MM, Luo YQ, et al. Land use change alters soil organic carbon: Constrained global patterns and predictors. Earth’s Future, 2024, 12: DOI: 10.1029/2023EF004254 [5] Yang YS, Guo JF, Chen GS, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 2009, 323: 153-162 [6] Guo LB, Gifford RM. Soil carbon stocks and land use change: A meta-analysis. Global Change Biology, 2002, 8: 345-360 [7] 赵吉霞, 王邵军, 陈奇伯, 等. 滇中高原云南松天然林和人工林土壤呼吸特征的比较. 中南林业科技大学学报, 2015, 35(1): 96-103 [8] Liang BY, Wang J, Zhang ZY, et al. Planted forest is catching up with natural forest in China in terms of carbon density and carbon storage. Fundamental Research, 2022, 2: 688-696 [9] Shu XY, Hu YF, Liu WJ, et al. Linking between soil properties, bacterial communities, enzyme activities, and soil organic carbon mineralization under ecological restoration in an alpine degraded grassland. Frontiers in Microbiology, 2023, 14: 1131836 [10] Yang SY, Jansen B, Absalah S, et al. Soil organic carbon content and mineralization controlled by the composition, origin and molecular diversity of organic matter: A study in tropical alpine grasslands. Soil and Tillage Research, 2022, 215: 105203 [11] 郝存抗, 周蕊蕊, 鹿鸣, 等. 不同盐渍化程度下滨海盐渍土有机碳矿化规律. 农业资源与环境学报, 2020, 37(1): 36-42 [12] 邹珊, 段文标, 王亚飞, 等. 阔叶红松林皆伐后不同恢复方式下土壤有机碳形态与矿化速率变化. 森林工程, 2024, 40(6): 79-90 [13] Mooshammer M, Wanek W, Zechmeister-Boltenstern S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 2014, 5: 22 [14] Wang XH, Wu DM, Li SYN, et al. Effects of C:N imbalance on soil microbial physiology in subtropical tree plantations associated with ectomycorrhizal and arbuscular mycorrhizal fungi. Geoderma, 2022, 422: 115932 [15] Waqar A, Muhammad NA, Muhammad S, et al. Soil organic carbon and nitrogen mineralization potential of manures regulated by soil microbial activities in contrasting soil textures. Journal of Soil Science and Plant Nutrition, 2024, 24: 3056-3067 [16] Olagoke FK, Kalbitz K, Vogel C, et al. Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils. Biology and Fertility of Soils, 2022, 58: 435-457 [17] 窦森, 李凯, 关松. 土壤团聚体中有机质研究进展. 土壤学报, 2011, 48(2): 412-418 [18] Wang L, Zhang CY, Peng J, et al. Splash erosion-induced soil aggregate turnover and associated organic carbon dynamics. Soil and Tillage Research, 2024, 235: 105900 [19] 徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展. 土壤通报, 2017, 48(6): 1523-1529 [20] Lin Z, Huang ZG, Liao DL, et al. Effects of soil organic matter components and iron aluminum oxides on aggregate stability during vegetation succession in granite red soil eroded areas. Journal of Mountain Science, 2022, 19: 2634-2650 [21] Li YH, Shahbaz M, Zhu ZK, et al. Contrasting response of organic carbon mineralization to iron oxide addition under conditions of low and high microbial biomass in anoxic paddy soil. Biology and Fertility of Soils, 2021, 57: 117-129 [22] Qi JY, Jing ZH, He C, et al. Effects of tillage management on soil carbon decomposition and its relationship with soil chemistry properties in rice paddy fields. Journal of Environmental Management, 2021, 279: 111595 [23] Lyu MK, Noormets A, Ukonmaanaho L, et al. Stability of soil organic carbon during forest conversion is more sensitive in deep soil than in topsoil in subtropical forests. Pedobiologia, 2021, 84: 150706 [24] 刘宝, 王民煌, 余再鹏, 等. 中亚热带天然林改造成人工林后土壤呼吸的变化特征. 林业科学, 2019, 55(4): 1-12 [25] 王小红, 杨智杰, 刘小飞, 等. 天然林转换成人工林对土壤团聚体稳定性及有机碳分布的影响. 水土保持学报, 2014, 28(6): 177-182 [26] 王翠娟, 刘小飞, 杨柳明, 等. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应. 应用生态学报, 2024, 35(1): 177-185 [27] Elliott ET. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50: 627-633 [28] 吴君君, 杨智杰, 翁发进, 等. 米槠天然林和人工林土壤呼吸的比较研究. 环境科学, 2014, 35(6): 2426-2432 [29] 郑子成, 李廷轩, 张锡洲, 等. 不同土地利用方式下土壤团聚体的组成及稳定性研究. 水土保持学报, 2009, 23(5): 228-231 [30] Guo JH, Feng HL, Roberge G, et al. The negative effect of Chinese fir (Cunninghamia lanceolata) monoculture plantations on soil physicochemical properties, microbial biomass, fungal communities, and enzymatic activities. Forest Ecology and Management, 2022, 519: 120297 [31] Yang ZJ, Chen SD, Liu XF, et al. Loss of soil organic carbon following natural forest conversion to Chinese fir plantation. Forest Ecology and Management, 2019, 449: 117476 [32] Guo JF, Chen GS, Xie JS, et al. Clear-cutting and slash burning effects on soil CO2 effux partitioning in Chinese fir and evergreen broadleaved forests in subtropical China. Soil Use and Management, 2016, 32: 220-229 [33] 毛艳玲, 杨玉盛, 刑世和, 等. 土地利用方式对土壤水稳性团聚体有机碳的影响. 水土保持学报, 2008, 22(4): 132-137 [34] 巩闪闪, 刘顺, 许格希, 等. 川西亚高山不同森林恢复方式对土壤团聚体稳定性的影响. 陆地生态系统与保护学报, 2023, 3(4): 1-9 [35] Luo XZ, Zhang R, Zhang LL, et al. Mechanisms of soil organic carbon stabilization and its response to conversion of primary natural broad leaf forests to secondary forests and plantation forests. Catena, 2024, 240: 108021 [36] 崔鸿侠, 潘磊, 黄志霖, 等. 神农架巴山冷杉林凋落物量养分归还及分解特征. 南京林业大学学报, 2017, 41(1): 194-198 [37] 曹善郅, 杨紫薇, 郑梅群, 等. 亚热带森林转换对土壤有机碳、氮矿化的影响. 农业科学, 2018, 8(10): 1132-1140 [38] Li ST, Lyu MK, Deng C, et al. Input of high-quality litter reduces soil carbon losses due to priming in a subtropical pine forest. Soil Biology and Biochemistry, 2024, 194: 109444 [39] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643 [40] Chen CM, Hall SJ, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications, 2020, 11: 2255 [41] Qi JY, Jing ZH, He C, et al. Effects of tillage management on soil carbon decomposition and its relationship with soil chemistry properties in rice paddy fields. Journal of Environmental Management, 2021, 279: 111595 [42] Adnan M, Xu MG, Sun N, et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management, 2020, 270: 110894 [43] Bronick CJ, Lal R. Soil structure and management: A review. Geoderma, 2005, 124: 3-22 [44] 肖海, 高峰, 邵艳艳, 等. 土壤原始颗粒对不同破碎机制下团聚体稳定性的影响. 土壤学报, 2021, 58(3): 649-656 |