[1] 陈志杰, 肖宇童, 董雄德, 等. 黄河中下游滩区泥沙淤积对土壤化学计量比的影响. 生态学杂志, 2022, 41(7): 1334-1341
[2] 曹雯婕, 李玉强, 陈银萍, 等. 科尔沁沙地不同土地利用类型土壤化学计量特征. 应用生态学报, 2022, 33(12): 3312-3320
[3] Kong JJ, Yang J, Bai E. Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest. Science of the Total Environment, 2018, 642: 1353-1361
[4] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947
[5] 袁星明, 朱宁华, 郭耆, 等. 南亚热带不同人工林对土壤理化性质的影响及土壤质量评价. 林业科学研究, 2022, 35(3): 112-122
[6] Hume A, Chen HYH, Taylor AR, et al. Soil C:N:P dynamics during secondary succession following fire in the boreal forest of central Canada. Forest Ecology and Management, 2016, 369: 1-9
[7] Chen H, Zhang ST, Ma CW, et al. Restoring farmland to forest increases phosphorus limitation based on microbial and soil C:N:P stoichiometry: A synthesis across China. Forest Ecology and Management, 2024, 556: 121745
[8] 刘婧, 缑倩倩, 王国华, 等. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征. 植物生态学报, 2023, 47(4): 546-558
[9] Yang Y, Wang GX, Shen HH, et al. Dynamics of carbon and nitrogen accumulation and C:N stoichiometry in a deciduous broadleaf forest of deglaciated terrain in the eastern Tibetan Plateau. Forest Ecology and Management, 2014, 312: 10-18
[10] Tian DS, Reich PB, Chen HYH, et al. Global changes alter plant multi-element stoichiometric coupling. New Phytologist, 2019, 221: 807-817
[11] Kang NQ, Hu YY, Guo YH, et al. High Ca and P homeostasis ensure stable forage Ca:P following historical nitrogen inputs in a temperate steppe. Grass and Forage Science, 2023, 1: 129-136
[12] 陶冶, 张元明, 周晓兵. 伊犁野果林浅层土壤养分生态化学计量特征及其影响因素. 应用生态学报, 2016, 27(7): 2239-2248
[13] 王玉婷, 查轩, 陈世发, 等. 红壤侵蚀退化马尾松林下不同治理模式土壤化学计量特征. 应用生态学报, 2020, 31(1): 17-24
[14] Yu GR, Chen Z, Piao SL, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 4910-4195
[15] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34(1): 64-71
[16] Feng C, Yan M, Fu SL, et al. Soil carbon and nutrient dynamics following cessation of anthropogenic distur-bances in degraded subtropical forests. Land Degradation & Development, 2017, 28: 2457-2467
[17] Su XP, Li SJ, Wan XH, et al. Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China. Forest Ecology and Management, 2021, 483: 118750
[18] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000
[19] Carter M, Gregorich E. Soil Sampling and Methods of Analysis. Boca Raton, FL, USA: CRC Press, 1993
[20] 许窕孜, 叶彩红, 张耕, 等. 北江中下游不同林分类型土壤C、N、P生态化学计量特征. 应用生态学报, 2023, 34(4): 962-968
[21] 王振宇, 王涛, 邹秉章, 等. 不同生长阶段杉木人工林土壤C∶N∶P化学计量特征与养分动态. 应用生态学报, 2020, 31(11): 3597-3604
[22] 许子君. 天然次生林与杉木人工林恢复过程对凋落物量与分解的影响. 硕士论文. 福州: 福建师范大学, 2022
[23] 王全成, 郑勇, 宋鸽, 等. 亚热带次级森林演替过程中模拟氮磷沉降对土壤微生物生物量及土壤养分的影响. 生态学报, 2021, 41(15): 6245-6256
[24] Yu ZP, Wang MH, Huang ZQ, et al. Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China. Global Change Biology, 2018, 24: 1308-1320
[25] 林开淼. 亚热带米槠人促林碳、氮、磷积累特征及土壤磷素有效性分级研究. 博士论文. 福州: 福建师范大学, 2015
[26] 张芸, 李惠通, 张辉, 等. 不同林龄杉木人工林土壤C∶N∶P化学计量特征及其与土壤理化性质的关系. 生态学报, 2019, 39(7): 2520-2531
[27] Tian HQ, Chen GS, Zhang CS, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98: 139-151
[28] 王涛, 万晓华, 王磊, 等. 杉木采伐迹地营造阔叶树对不同层次土壤磷组分和有效性的影响. 应用生态学报, 2020, 31(4): 1088-1096
[29] 曹娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征. 林业科学, 2015, 51(7): 1-8
[30] 牛瑞龙, 高星, 徐福利, 等. 秦岭中幼林龄华北落叶松针叶与土壤的碳氮磷生态化学计量特征. 生态学报, 2016, 36(22): 7384-7392
[31] 喻阳华, 程雯, 杨丹丽. 贵州喀斯特山区典型人工林土壤矿质元素特征. 广西植物, 2019, 39(1): 108-116
[32] 李佳奇, 郭屹立, 李冬兴, 等. 桂西南北热带喀斯特季节性雨林土壤钾、钙、镁空间分布特征及其影响因素. 生物多样性, 2023, 31(2): 178-189
[33] 曹婧, 陈怡平, 江瑶, 等. 陕西省农田土壤速效钾时空变化及其影响因素. 水土保持学报, 2021, 35(5): 296-302
[34] Sardans J, Peñuelas J. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24: 261-275
[35] Tian LM, Zhao L, Wu XD, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Science of the Total Environment, 2018, 622-623: 192-202
[36] Wang SQ, Zhou PY, Luo B, et al. Stoichiometric cha-racteristics of medium- and micro-elements (Ca, Mg, Fe, and Mn) in soil aggregates as affected by stand age in Chinese fir plantations. Science of the Total Environment Land Degradation & Development, 2022, 33: 3991-4003
[37] Vitousek PM. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 1984, 65: 285-298
[38] Bauters M, Janssens IA, Wasner D, et al. Increasing calcium scarcity along Afrotropical forest succession. Nature Ecology Evolution, 2022, 6: 1122-1131
[39] 范铭丰. 三明市耕地土壤交换性镁含量空间分布特征及影响因素分析. 中国农学通报, 2021, 37(29): 71-77 |