Chinese Journal of Applied Ecology ›› 2022, Vol. 33 ›› Issue (1): 104-110.doi: 10.13287/j.1001-9332.202201.021
Previous Articles Next Articles
SUN Xiao-li1, JIA Chun-yan2, TIAN Shou-le1, XU Wen-yan3, WANG Jin-ping1, RAN Kun1, SHEN Guang-ning1*
Received:
2021-04-25
Accepted:
2021-10-30
Online:
2022-01-15
Published:
2022-07-15
SUN Xiao-li, JIA Chun-yan, TIAN Shou-le, XU Wen-yan, WANG Jin-ping, RAN Kun, SHEN Guang-ning. Effects of exogenous methylglyoxal on chesnut seedlings under drought stress[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 104-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202201.021
[1] | 周志豪, 王月, 闵雄, 等. 硫化氢信号与其它信号交互作用调控植物的耐旱性. 生物技术通报, 2017, 33(6): 1-9 |
[2] | 武燕奇, 郭素娟. 5个板栗品种(系)对持续干旱胁迫和复水的生理响应. 中南林业科技大学学报, 2017, 37(10): 67-74 |
[3] | 孙晓莉, 田寿乐, 沈广宁, 等. 干旱胁迫下H2S对板栗幼苗根系抗氧化特性及呼吸相关酶活性的影响. 核农学报, 2019, 33(5): 1024-1031 |
[4] | 高桂芹, 王猛, 费晓臣, 等. 迁西县板栗气象干旱指数保险产品设计. 现代农业科技, 2017(2): 183-185 |
[5] | Hoque TS, Hossain MA, Mostofa MG, et al. Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance. Frontiers in Plant Science, 2016, 7: 1341, doi: 10.3389/fpls.2016.01341 |
[6] | Rabbani N, Thornalley PJ. Glyoxalase in diabetes, obesity and related disorders. Seminars in Cell and Developmental Biology, 2011, 22: 309-317 |
[7] | Yadav SK, Singla-pareek SL, Ray M, et al. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 2005, 337: 61-67 |
[8] | Hoque MA, Uraji M, Torii A, et al. Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. Journal of Biochemical and Molecular Toxicology, 2012, 26: 315-321 |
[9] | Li ZG, Long WB, Yang SZ, et al. Signaling molecule methylglyoxal-induced thermotolerance is partly mediated by hydrogen sulfide in maize (Zea mays L.) seedlings. Acta Physiologiae Plantarum, 2018, 40: 76, doi: 10.1007/s11738-018-2653-4 |
[10] | Kaur C, Kushwaha HR, Mustafiz A, et al. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Frontiers in Plant Science, 2015, 6: 682, doi: 10.3389/fpls.2015.00682 |
[11] | Kaur C, Sharma S, Singla-Pareek SL, et al. Methylglyoxal, triose phosphate isomerase, and glyoxalase pathway: Implications in abiotic stress and signaling in plants. Elucidation of Abiotic Stress Signaling in Plants, 2015, 2015: 347-366, doi: 10.1007/978-1-4939-2211-6_13 |
[12] | 闵雄, 周志豪, 李忠光. 信号分子硫化氢的代谢及其在植物耐热性形成中的作用. 植物生理学报, 2016, 52(1): 37-46 |
[13] | Li ZG. Methylglyoxal and glyoxalase system in plants: Old players, new concepts. Botanical Review, 2016, 82: 183-203 |
[14] | Bless Y, Ndlovu L, Gokul A, et al. Exogenous methylglyoxal alleviates zirconium toxicity in Brassica rapa L. seedling shoots. South African Journal of Botany, 2017, 109: 327, doi: 10.1016/j.sajb.2017.01.030 |
[15] | Mostofa MG, Ghosh A, Li ZG, et al. Methylglyoxal: A signaling molecule in plant abiotic stress responses. Free Radical Biology and Medicine, 2018, 122: 96-109 |
[16] | Hossain MA, Burritt DJ, Fujita M. Cross-stress tole-rance in plants: Molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxification systems. Abiotic Stress Response in Plants, 2016, 2016: 327-380, https://doi.org/10.1002/9783527694570.ch16 |
[17] | Hossain MA, Fujita M. Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Bio-science, Biotechnology, and Biochemistry, 2009, 73: 2007-2013 |
[18] | Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 2010, 16: 259-272 |
[19] | Li ZG, Duan XQ, Min X, et al. Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. Protoplasma, 2017, 254: 1995-2006 |
[20] | Wang Y, Ye XY, Qiu XM, et al. Methylglyoxal triggers the heat tolerance in maize seedlings by driving AsA-GSH cycle and reactive oxygen species-/methylglyoxal-scavenging system. Plant Physiology and Biochemistry, 2019, 138: 91-99 |
[21] | 张蜀秋, 李云, 武维华. 植物生理学实验技术教程. 北京: 科学出版社, 2011 |
[22] | 赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002 |
[23] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003 |
[24] | 赵佳冰, 杜常健, 马长明, 等. 板栗“燕山早丰”幼苗光合与碳氮代谢对干旱胁迫的响应. 应用生态学报, 2020, 31(11): 3674-3680 |
[25] | 叶芯妤, 邱雪梅, 王月, 等. 乙二醛酶系统及其在植物响应和适应环境胁迫中的作用. 植物生理学报, 2019, 55(4): 401-410 |
[26] | 王月, 周志豪, 叶芯妤, 等. 甲基乙二醛: 植物中一种新的信号分子. 植物生理学报, 2018, 54(1): 10-18 |
[27] | Hasanuzzaman M, Nahar K, Anee TI, et al. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 2017, 23: 249-268 |
[28] | Askari-Khorasgani O, Pessarakli M. Manipulation of plant methylglyoxal metabolic and signaling pathways for improving tolerance to drought stress. Journal of Plant Nutrition, 2019, 42: 1268-1275 |
[29] | Nathan C, Ding A. SnapShot: Reactive oxygen intermediates (ROI). Cell, 2010, 140: 951, doi: 10.1016/j.cell.2010.03.008 |
[30] | Iqbal N, Khan N. Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. New York: Springer, 2016 |
[31] | 王国骄, 唐亮, 范淑秀, 等. 抗氧化机制在作物对非生物胁迫耐性中的作用. 沈阳农业大学学报, 2012, 43(6): 719-724 |
[32] | Kornyeyev D, Logan BA, Payton P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologia Plantarum, 2001, 113: 323-331 |
[33] | 李玲, 李俊, 张春雷, 等. 外源ABA和BR在提高油菜幼苗耐渍性中的作用. 中国油料作物学报, 2012, 34(5): 489-495 |
[34] | 安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略. 应用生态学报, 2012, 23(10): 2907-2915 |
[35] | Bhuiyan TF, Ahamed KU, Nahar K, et al. Mitigation of PEG-induced drought stress in rapeseed (Brassica rapa L.) by exogenous application of osmolytes. Biocatalysis and Agricultural Biotechnology, 2019, 20: 101197, doi: 10.1016/j.bcab.2019.101197 |
[36] | Zhu JK. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324 |
[37] | Mahmood Q, Ahmad R, Kwak SS, et al. Ascorbate and glutathione: Protectors of plants in oxidative stress// Anjum N, Chan MT, Umar S, eds. Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht, Germany: Springer, 2010: 209-229, doi: 10.1007/978-90-481-9404-9_7 |
[38] | Mano J. Reactive carbonyl species: Their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiology and Biochemistry, 2012, 59: 90-97 |
[1] | ZHOU Dan, LI Haiyan, WANG Xiujun, LI Qingwei. Effects of exogenous melatonin on the osmotic regulation and antioxidant capacity of Ginkgo biloba seedlings under salt stress [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 431-438. |
[2] | LI Junliang, WANG Shibo, LI Yajun, HAO Xingyu, ZONG Yuzheng, ZHANG Dongsheng, SHEN Jie, SHI Xinrui, LI Ping. Effects of elevated CO2 concentration on cell structure and stress resistance physiology of Setaria italica under drought stress [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1281-1289. |
[3] | WANG Jing, FU Bingzhe, LI Shuxia, WANG Xing, SONG Wenxue, YE Yunong, HU Pengfei, WANG Tongrui. Effects of exogenous melatonin on growth and physiological characteristics of Agropyron mongolicum seedlings under drought stress [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 2947-2957. |
[4] | LIU Xigang, LI Nan, JI Tuo, ZHOU Bo, WEI Min, LI Jing, YANG Fengjuan. Effects of microbial agents and corn protein ferment on physiological characteristics in leaves and yield of tomato [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 3039-3044. |
[5] | ZHAO Lei, JIN Haidi, CAO Xiaoyun, DENG Wenhui, DU Lingjuan. Physiological response to drought stress and drought resistance of six Helleborus orientlis cultivars [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2644-2654. |
[6] | YU Xin-lei, YUAN Jun-feng, LIU Dong-wei, CHEN Jin-hui, YAN Qiao-ling. Effects of field soil warming on the growth and physiology of Juglans mandshurica seedlings [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 11-17. |
[7] | QIAN Bi-chang, ZHAO Chen, ZHAO Ji-hao, LAI Hua-jiang, LI Xiang-dong, LIU Zhao-xin. Effects of different peanut-cotton intercropping modes on physiological characteristics and yield of peanut in late growth stage [J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2422-2430. |
[8] | ZHANG Yong-e, ZHAO Yang, LU Wei-wei, YU Xin-xiao, ZHANG Xiao-ming, WANG Zhao-yan, LIU Bing, XIN Yan. Effects of CO2 concentration and soil water content on short-term water-use efficiency at whole-plant level [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1505-1510. |
[9] | WANG Hui, WANG Dong-mei, ZHANG Ze-zhou, REN Huai-xin, HUANG Wei, XIE Zheng-feng. Effects of exogenous melatonin on antioxidant capacity and nutrient uptake of Lolium perenne and Medicago sativa under drought stress [J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1311-1319. |
[10] | LI Yue-ling, JIN Ze-xin, LUO Guang-yu, CHEN Chao, SUN Zhong-shuai, WANG Xiao-yan. Effects of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrate contents and C:N:P stoichiometry of Heptacodium miconioides under drought stress [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 963-971. |
[11] | FENG Xiao-long, LIU Ran, LI Cong-juan, WANG Yu-gang, KONG Lu, WANG Zeng-ru. Stem photosynthesis and its main influencing factors of Haloxylon ammodendron and Tamarix ramosissima. [J]. Chinese Journal of Applied Ecology, 2022, 33(2): 344-352. |
[12] | WU Liang, GAO Ge, SHI Shuang, LI Long-xuan, PENG Xiu-juan, LI Wen-hui, WANG Ping, ZHANG Zhi-qiang. Effects of water level variations on survival, morphological phenotype and responsiveness of tadpoles to phytohemagglutinin [J]. Chinese Journal of Applied Ecology, 2022, 33(12): 3427-3432. |
[13] | XU Chen-xiao, ZHANG Xiao-yu, LIU Chao-yue, LIU Kun, BI Huan-gai, AI Xi-zhen. Alleviating effect of exogenous melatonin and calcium on the peroxidation damages of cucumber under high temperature stress [J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2725-2735. |
[14] | WANG Sheng-li, SONG Zheng-guo, WANG Cheng-wei, LIU Yu, GAO Min-ling. Toxic effects of polystyrene and dibutyl phthalate on purple lettuce [J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3335-3340. |
[15] | XU Yang, LIU Yin, PENG Zheng, GUO Lan-ping, LIU Da-hui. Effects of chemical fertilizer reduction combined with organic fertilizer on the yield, quality, and pharmacological activity of Chrysanthemum morifolium [J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2800-2808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||