Chinese Journal of Applied Ecology ›› 2023, Vol. 34 ›› Issue (4): 903-912.doi: 10.13287/j.1001-9332.202304.033
• Special Features of Black Soil Protection and Agricultural Sustainable Development • Previous Articles Next Articles
LYU Fuze1,2,3, YANG Yali1,3*, BAO Xuelian1,3, ZHANG Changren4, ZHENG Tiantian1,3, HE Hongbo1,3, ZHANG Xudong1,3, XIE Hongtu1,3
Received:
2022-12-13
Accepted:
2023-03-12
Online:
2023-04-15
Published:
2023-10-15
LYU Fuze, YANG Yali, BAO Xuelian, ZHANG Changren, ZHENG Tiantian, HE Hongbo, ZHANG Xudong, XIE Hongtu. Effects of no-tillage and different stover mulching amounts on soil microbial community and microbial residue in the Mollisols of China[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 903-912.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202304.033
[1] | 张佳宝, 孙波, 朱教君, 等. 黑土地保护利用与山水林田湖草沙系统的协调及生态屏障建设战略. 中国科学院院刊, 2021, 36(10): 1155-1164 |
[2] | 田慎重. 基于长期耕作和秸秆还田的农田土壤碳库演变、固碳减排潜力和碳足迹分析. 博士论文. 泰安: 山东农业大学, 2014 |
[3] | Shahbaz M, Kuzyakov Y, Heitkamp F. Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma, 2017, 304: 76-82 |
[4] | Zhu X, Xie H, Masters MD, et al. Microbial trade-off in soil organic carbon storage in a no-till continuous corn agroecosystem. European Journal of Soil Biology, 2020, 96: 103146 |
[5] | 吕慧捷, 袁小伟, 何红波. 玉米不同生育期土壤氨基糖动态变化特征. 中国土壤与肥料, 2018(5): 147-153 |
[6] | 邵帅, 何红波, 张威, 等. 土壤有机质形成与来源研究进展. 吉林师范大学学报: 自然科学版, 2017, 38(1): 126-130 |
[7] | Ding X, Han X, Zhang X, et al. Continuous manuring combined with chemical fertilizer affects soil microbial residues in a Mollisol. Biology and Fertility of Soils, 2013, 49: 387-392 |
[8] | Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 |
[9] | 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 2021, 51(5): 680-695 |
[10] | 齐鸿雁, 薛凯, 张洪勋. 磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用. 生态学报, 2003, 23(8): 1576-1582 |
[11] | Amelung W, Miltne A, Zhang X, et al. Fate of micro-bial residues during litter decomposition as affected by minerals. Soil Science, 2001, 166: 598-606 |
[12] | Shao PS, Liang C, Lynch L, et al. Reforestation acce-lerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biology and Biochemistry, 2019, 131: 182-190 |
[13] | Glaser B, Turrión MB, Alef K. Amino sugars and muramic acid: Biomarkers for soil microbial community structure analysis. Soil Biology and Biochemistry, 2004, 36: 399-407 |
[14] | 董亮, 田慎重, 王学君, 等. 秸秆还田对土壤养分及土壤微生物数量的影响. 中国农学通报, 2017, 33(1): 77-80 |
[15] | 张常仁, 杨雅丽, 程全国, 等. 不同耕作模式对东北黑土微生物群落结构和酶活性的影响. 土壤与作物, 2020, 9(4): 335-347 |
[16] | Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter// Sparks DL, ed. Methods of Soil Analysis: Part 3. Chemical Methods. Madison, WI, USA: Soil Science Society of America, 1996, 5: 961-1010 |
[17] | Liang C, Balser TC. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nature Communications, 2012, 3: 1222 |
[18] | Veum KS, Lorenz T, Kremer RJ. Phospholipid fatty acid profiles of soils under variable handling and storage conditions. Agronomy Journal, 2019, 111: 1090-1096 |
[19] | Zhang X, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28: 1201-1206 |
[20] | 王燕, 王小彬, 刘爽, 等. 保护性耕作及其对土壤有机碳的影响. 中国生态农业学报, 2008, 16(3): 766-771 |
[21] | 安思危, 付健, 杨克军, 等. 不同耕作和秸秆还田方式对根际土壤养分及玉米产量的影响. 黑龙江农业科学, 2021(8): 1-7 |
[22] | 徐莹莹, 靳晓燕, 庞爱国, 等. 土壤性状和玉米生长对不同耕作方式的响应. 农机化研究, 2022, 44(11): 11-18 |
[23] | 刘威. 连续秸秆还田对土壤结构性、养分和有机碳组分的影响. 硕士论文. 武汉: 华中农业大学, 2015 |
[24] | 任晓明, 陈粲, 陈效民, 等. 秸秆还田深度对黄棕壤养分及物理性质的影响. 水土保持通报, 2018, 38(2): 58-64 |
[25] | 潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013, 21(5): 526-535 |
[26] | 傅敏, 郝敏敏, 胡恒宇, 等. 土壤有机碳和微生物群落结构对多年不同耕作方式与秸秆还田的响应. 应用生态学报, 2019, 30(9): 3183-3194 |
[27] | 胡凯婕, 栾璐, 郑洁, 等. 秸秆还田方式对丛枝菌根真菌群落和玉米磷素利用的影响. 土壤学报, 2023, 60(1): 269-279 |
[28] | Zeng H, Tan F, Zhang Y, et al. Effects of cultivation and return of Bacillus thuringiensis (Bt) maize on the diversity of the arbuscular mycorrhizal community in soils and roots of subsequently cultivated conventional maize. Soil Biology and Biochemistry, 2014, 75: 254-263 |
[29] | 吕开源, 周立萍, 康建宏, 等. 不同耕作方式下玉米秸秆还田对土壤真菌群落的影响. 中国土壤与肥料, 2022(8): 112-122 |
[30] | Wang Y, Xu J, Shen J, et al. Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields. Soil and Tillage Research, 2010, 107: 71-79 |
[31] | He HB, Zhang W, Zhang XD, et al. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation. Soil Biology and Biochemistry, 2011, 43: 1155-1161 |
[32] | Ni XY, Liao S, Tan SY, et al. A quantitative assessment of amino sugars in soil profiles. Soil Biology and Biochemistry, 2020, 143: 107762 |
[33] | Yang LM, Fan YX, Yang YS, et al. Decreases in soil P availability are associated with soil organic P declines following forest conversion in subtropical China. Catena, 2021, 205: 105459 |
[34] | Huang Y, Liang C, Duan XW, et al. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma, 2019, 353: 340-346 |
[35] | Zheng T, Miltner A, Liang C, et al. Turnover of gram-negative bacterial biomass-derived carbon through the microbial food web of an agricultural soil. Soil Biology and Biochemistry, 2021, 152: 108070 |
[36] | Bayram Ö, Braus GH. Coordination of secondary metabo-lism and development in fungi: The velvet family of regulatory proteins. FEMS Microbiology Reviews, 2012, 57: 814-821 |
[37] | Li L, Wilson CB, He H, et al. Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage far-ming. Soil Biology and Biochemistry, 2019, 135: 369-378 |
[1] | ZHANG Yuhan, LI Yao, ZHOU Yue, CHEN Yuanjia, AN Shaoshan. Changes of soil nutrients and organic carbon fractions in Caragana korshinskii forests with different restoration years in mountainous areas of southern Ningxia, China [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 639-647. |
[2] | LI Jiayu, SHI Xiuzhen, LI Shuaijun, WANG Zhenyu, WANG Jianqing, ZOU Bingzhang, WANG Sirong, HUANG Zhiqun. Effects of stand ages on soil enzyme activities in Chinese fir plantations and natural secondary forests [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 339-346. |
[3] | YU Miao, GUO Xuelian, LI Yunzhao, ZHANG Kun, DU Zhaohong. Effects of fresh-salt water interaction on spatial variations of soil organic carbon in reed wetland of Yellow River Estuary [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 415-423. |
[4] | YANG Yang, WANG Baorong, DOU Yanxing, XUE Zhijing, SUN Hui, WANG Yunqiang, LIANG Chao, AN Shaoshan. Advances in the research of transformation and stabilization of soil organic carbon from plant and microbe [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 111-123. |
[5] | SHEN Jikai, HUANG Yimei, HUANG Qian, XU Fengjing. Accumulation of microbial necromass carbon and their contribution to soil organic carbon in different vegetation types on the Loess Plateau, Northwest China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 124-132. |
[6] | JIA Juan, LI Xingqi, FENG Xiaojuan. Effect of drainage on microbial transformation processes of soil organic carbon in two typical wetlands of China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 133-140. |
[7] | HU Jianwen, LIU Changfu, GOU Mengmeng, CHEN Huiling, LEI Lei, XIAO Wenfa, ZHU Sufeng, HU Ruyuan. Influencing mechanism of stand age to the accumulation of microbial residue carbon in the Pinus masso-niana plantations [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 153-160. |
[8] | ZHANG Yuhan, LI Yao, ZHOU Yue, LIU Chunhui, AN Shaoshan. Distribution characteristics of microbial necromass carbon along soil profiles in different restoration periods of Caragana korshinskii in mountainous areas of Southern Ningxia, China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 161-168. |
[9] | JING Yanli, LI Xuhua, ZHANG Yuan, ZHANG Xinyue, LIU Mei, FENG Qiuhong. Effects of thinning on accumulation of soil microbial residue carbon of Picea asperata plantations in sub-alpine region of western Sichuan, China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 169-176. |
[10] | WANG Cuijuan, LIU Xiaofei, YANG Liuming, JIA Shuxian. Response of soil microbial necromass carbon to litter and root carbon inputs in a mid-subtropical Castanopsis carlesii plantation [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 177-185. |
[11] | ZHANG Wenyi, JIANG Zhenhui, PAN Lixia, ZHOU Jiashu, LIU Juan, CAI Yanjiang, LI Yongfu. Effects of maize straw and its biochar application on soil organic carbon chemical composition and carbon degradation genes in a Moso bamboo forest [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2383-2390. |
[12] | DAI Zecheng, LIU Yuexiu, DANG Ning, WANG Zhirui, CAI Jiangping, ZHANG Yuge, SONG Yongbo, LI Hui, JIANG Yong. Short-term legacy effects of long-term nitrogen and water addition on soil chemical properties and micro-bial characteristics in a temperate grassland [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1834-1844. |
[13] | XUE Zhijing, QU Tingting, LIU Chunhui, LIU Xiaokang, WANG Rui, WANG Ning, ZHOU Zhengchao, DONG Zhibao. Contribution of microbial necromass to soil organic carbon formation during litter decomposition under incubation conditions [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1845-1852. |
[14] | LYU Jinghua, ZHAO Xuyan, LU Mei, LI Cong, YANG Zhidong, LIU Pan, CHEN Zhiming, FENG Jun. Effects of vegetation and soil changes on microbial biomass carbon and nitrogen in the Napahai meadow under N deposition [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1525-1532. |
[15] | DOU Mengke, ZHANG Weidong, YANG Qingpeng, CHEN Longchi, LIU Yejia, HU Yalin. Effects of Chinese fir planting and phosphorus addition on soil microbial biomass and extracellular enzyme activities. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 631-638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||