Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (5): 1607-1616.doi: 10.13287/j.1001-9332.202005.016
• Original Articles • Previous Articles Next Articles
BAI Yi-xin1,2, SHENG Mao-yin1,2*, HU Qi-juan1,3, ZHAO Chu1,3, WU Jing1,3, ZHANG Mao-sha1,3
Received:
2019-12-26
Online:
2020-05-15
Published:
2020-05-15
Contact:
* E-mail: shmoy@163.com
Supported by:
BAI Yi-xin, SHENG Mao-yin, HU Qi-juan, ZHAO Chu, WU Jing, ZHANG Mao-sha. Effects of land use change on soil organic carbon and its components in karst rocky desertification of southwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1607-1616.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202005.016
[1] Cai YL. Preliminary research on ecological reconstruction in karst mountain poverty areas of southwest China. Advances in Earth Science, 1996, 11: 602-606 [2] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627 [3] 闫丽娟, 李广, 吴江琪, 等. 黄土高原4种典型植被对土壤活性有机碳及土壤碳库的影响. 生态学报, 2019, 39(15): 1-9 [Yan L-J, Li G, Wu J-Q, et al. Effects of four typical vegetations on soil active organic carbon and soil carbon in Loess Plateau. Acta Ecologica Sinica, 2019, 39(15): 1-9] [4] 张文娟, 廖洪凯, 龙健, 等. 种植花椒对喀斯特石漠化地区土壤有机碳矿化及活性有机碳的影响. 环境科学, 2015, 36(3): 1053-1059 [Zhang W-J, Liao H-K, Long J, et al. Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou Province. Environmental Science, 2015, 36(3): 1053-1059] [5] 廖洪凯, 李娟, 龙健, 等. 土地利用及退耕对喀斯特山区土壤活性有机碳的影响. 环境科学, 2014, 35(1): 240-247 [Liao H-K, Li J, Long J, et al. Effects of land use and abandonment on soil labile organic carbon in the karst region of southwest China. Environmental Science, 2014, 35(1): 240-247] [6] 盛茂银, 刘洋, 熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应. 生态学报, 2013, 33(19): 6303-6313 [Sheng M-Y, Liu Y, Xiong K-N. Response of soil physical-chemical properties to rocky desertification succession in south China karst. Acta Ecologica Sinica, 2013, 33(19): 6303-6313] [7] 张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用. 应用生态学报, 2011, 22(7): 1921-1930 [Zhang G, Cao Z-P, Hu C-J. Soil organic carbon fractionation methods and their applications in farmland ecosystem research. Chinese Journal of Applied Ecology, 2011, 22(7): 1921-1930] [8] 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应. 生态学杂志, 1999, 18(3): 33-39 [Shen H, Cao Z-H, Hu Z-Y. Characteristics and ecological effects of the active organic carbon in soil. Chinese Journal of Ecology, 1999, 18(3): 33-39] [9] Li LQ, Wang D, Liu XY, et al. Soil organic carbon fractions and microbial community and functions under changes in vegetation: A case of vegetation succession in karst forest. Environmental Earth Science, 2014, 71: 3727-3735 [10] Pang DB, Cui M, Liu YG, et al. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China. Ecological Engineering, 2019, 138: 391-402 [11] Yang X, Ren WD, Sun BH, et al. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. Journal of Soils and Sediments, 2017, 18: 1569-1578 [12] Jiang ZC, Lian YQ, Qin XQ. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Science Reviews, 2014, 132: 1-12 [13] 李阳兵, 黄娟, 徐倩, 等. 对石漠化概念及其治理的再思考. 贵州师范大学学报:自然科学版, 2017, 35(5): 1-6 [Li Y-B, Huang J, Xu Q, et al. Rethinking the concept and restoration of Karst rocky desertification. Journal of Guizhou Normal University: Natural Sciences, 2017, 35(5): 1-6] [14] Zhang YH, Xu XL, Li ZW, et al. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 2019, 650: 2657-2665 [15] 田静, 盛茂银, 汪攀, 等. 西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响. 环境科学, 2019, 40(9): 1-15 [Tian J, Sheng M-Y, Wang P, et al. Influence of land use change on litter and soil C, N, P stoichiometrical cha-racteristics and soil enzyme activity in karst ecosystem, southwest China. Environmental Science, 2019, 40(9): 1-15] [16] Wang LJ, Wang P, Sheng MY, et al. Ecological stoichio-metry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China. Global Ecology and Conservation, 2018, 16: 1-9 [17] Liao HK, Long J, Li J. Soil organic associated in size-fractions as affected by different land uses in karst region of Guizhou, Southwest China. Environmental Earth Science, 2016, 74: 6877-6886 [18] 龙健, 廖洪凯, 李娟, 等. 基于冗余分析的典型喀斯特山区土壤-石漠化关系研究. 环境科学, 2012, 33(6): 2131-2138 [Long J, Liao H-K, Li J, et al. Relationships between soil and rocky desertification in typi-cal karst mountain area based om redundancy analysis. Environmental Science, 2012, 33(6): 2131-2138] [19] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 18-96 [Lu R-K. Analytical Methods of Soil and Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000: 18-96] [20] Jones DL, Willett VB. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999 [21] Blair GJ, Lefroy RDB, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46: 1459-1466 [22] Camberdella CA, Elliott ET. Particulate soil organic matter across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56: 777-783 [23] Janzen HH, Campbell CA, Brandt SA, et al. Light- fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 1992, 56: 1799-1806 [24] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征. 应用生态学报, 2014, 25(6): 1569-1577 [Wang D, Geng Z-C, She D, et al. Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains. Chinese Journal of Applied Ecology, 2014, 25(6): 1569-1577] [25] 张伟, 王克林, 陈洪松, 等. 典型喀斯特峰丛洼地土壤有机碳含量空间预测研究. 土壤学报, 2012, 49(3): 601-606 [Zhang W, Wang K-L, Chen H-S, et al. Use of satellite information and gis to predict distribution of soil organic carbon in depressions amid clusters of karst peaks. Acta Pedologica Sinica, 2012, 49(3): 601-606] [26] 张文敏, 吴明, 王蒙, 等. 杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征. 土壤学报, 2014, 51(6): 1351-1360 [Zhang W-M, Wu M, Wang M, et al. Distribution characteristics of organic carbon and its components in soils under different types of vegetation in wetland of Hangzhou bay. Acta Pedologica Sinica, 2014, 51(6): 1351-1360] [27] 徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征. 环境科学, 2019, 40(3): 1491-1503 [Xu G-P, Li Y-Q, Shen Y-Y, et al. Soil organic carbon distributions and its components under different plant communities along a water table gradient in the Huixian karst wetland in Guilin. Environmental Science, 2019, 40(3): 1491-1503] [28] Lu XQ, Toda H, Ding FJ, et al. Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. European Journal of Soil Biology, 2014, 61: 49-57 [29] 段亚锋, 王克林, 冯达, 等. 典型喀斯特小流域土壤有机碳和全氮空间格局变化及其对退耕还林还草的响应. 生态学报, 2018, 38(5): 1560-1568 [Duan Y-F, Wang K-L, Feng D, et al. Response of the spatial pattern of soil organic carbon and total nitrogen to vegetation restoration in a typical small karst catchment. Acta Ecologica Sinica, 2018, 38(5): 1560-1568] [30] 廖洪凯, 龙健, 李娟. 土地利用方式对喀斯特山区土壤养分及有机碳活性组分的影响. 自然资源学报, 2012, 27(12): 2081-2090 [Liao H-K, Long J, Li J. Effects of different land use patterns on soil nutrients and soil active organic carbon components in Karst Mountain Area. Journal of Natural Resources, 2012, 27(12): 2081-2090] [31] 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异. 生态学报, 2015, 35(23): 7625-7633 [Xiao Y, Huang Z-G, Wu H-T, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain. Acta Ecolo-gica Sinica, 2015, 35(23): 7625-7633] [32] 唐国勇, 李昆, 孙永玉, 等. 干热河谷不同利用方式下土壤活性有机碳含量及其分配特征. 环境科学, 2010, 31(5): 1365-1371 [Tang G-Y, Li K, Sun Y-Y, et al. Soil labile organic carbon contents and their allocation characteristics under different land use at dry-hot valley. Environmental Science, 2010, 31(5): 1365-1371] [33] Yang XY, Ren WD, Sun BH, et al. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geo-derma, 2012, 177: 49-56 [34] Huo L, Pang HC, Zhao YG, et al. Buried straw layer plus plastic mulching improves soil organic carbon fractions in an arid saline soil from Northwest China. Soil and Tillage Research, 2017, 165: 286-293 [35] 宇万太, 马强, 赵鑫, 等. 不同土地利用类型下土壤活性有机碳库的变化. 生态学杂志, 2007, 26(12): 2013-2016 [Yu W-T, Ma Q, Zhao X, et al. Changes of soil active carbon pool under different land use types. Chinese Journal of Ecology, 2007, 26(12): 2013-2016] [36] 吕茂奎, 谢锦升, 周艳翔, 等. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化. 应用生态学报, 2014, 25(1): 37-44 [Lyu M-K, Xie J-S, Zhou Y-X, et al. Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area. Chinese Journal of Applied Ecology, 2014, 25(1): 37-44] [37] 董洪芳, 于君宝, 管博. 黄河三角洲碱蓬湿地土壤有机碳及其组分分布特征. 环境科学, 2013, 34(1): 288-292 [Dong H-F, Yu J-B, Guan B, et al. Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta. Environmental Science, 2013, 34(1): 288-292] [38] Wang XL, Xu JY, Wu ZS, et al. Effect of annual prescribed burning of wetlands on soil organic carbon fractions: A 5-year study in Poyang, China. Ecological Engineering, 2019, 138: 219-226 |
[1] | ZHANG Yuhan, LI Yao, ZHOU Yue, CHEN Yuanjia, AN Shaoshan. Changes of soil nutrients and organic carbon fractions in Caragana korshinskii forests with different restoration years in mountainous areas of southern Ningxia, China [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 639-647. |
[2] | YU Miao, GUO Xuelian, LI Yunzhao, ZHANG Kun, DU Zhaohong. Effects of fresh-salt water interaction on spatial variations of soil organic carbon in reed wetland of Yellow River Estuary [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 415-423. |
[3] | ZHANG Tonghui, CONG Anqi, LIAN Jie, XU Yuanzhi, WANG Ning. Thinking from Horqin Grassland to Horqin Sandy Land [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 25-30. |
[4] | YANG Yang, WANG Baorong, DOU Yanxing, XUE Zhijing, SUN Hui, WANG Yunqiang, LIANG Chao, AN Shaoshan. Advances in the research of transformation and stabilization of soil organic carbon from plant and microbe [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 111-123. |
[5] | SHEN Jikai, HUANG Yimei, HUANG Qian, XU Fengjing. Accumulation of microbial necromass carbon and their contribution to soil organic carbon in different vegetation types on the Loess Plateau, Northwest China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 124-132. |
[6] | JIA Juan, LI Xingqi, FENG Xiaojuan. Effect of drainage on microbial transformation processes of soil organic carbon in two typical wetlands of China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 133-140. |
[7] | HU Jianwen, LIU Changfu, GOU Mengmeng, CHEN Huiling, LEI Lei, XIAO Wenfa, ZHU Sufeng, HU Ruyuan. Influencing mechanism of stand age to the accumulation of microbial residue carbon in the Pinus masso-niana plantations [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 153-160. |
[8] | ZHANG Yuhan, LI Yao, ZHOU Yue, LIU Chunhui, AN Shaoshan. Distribution characteristics of microbial necromass carbon along soil profiles in different restoration periods of Caragana korshinskii in mountainous areas of Southern Ningxia, China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 161-168. |
[9] | JING Yanli, LI Xuhua, ZHANG Yuan, ZHANG Xinyue, LIU Mei, FENG Qiuhong. Effects of thinning on accumulation of soil microbial residue carbon of Picea asperata plantations in sub-alpine region of western Sichuan, China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 169-176. |
[10] | WANG Cuijuan, LIU Xiaofei, YANG Liuming, JIA Shuxian. Response of soil microbial necromass carbon to litter and root carbon inputs in a mid-subtropical Castanopsis carlesii plantation [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 177-185. |
[11] | ZHANG Wenyi, JIANG Zhenhui, PAN Lixia, ZHOU Jiashu, LIU Juan, CAI Yanjiang, LI Yongfu. Effects of maize straw and its biochar application on soil organic carbon chemical composition and carbon degradation genes in a Moso bamboo forest [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2383-2390. |
[12] | LIU Yuting, HOU Manfu, HE Luyan, TANG Wei, ZHAO Jun. Niche and interspecific association of dominant tree species in karst forest of Junzi Mountain, Eastern Yunnan, China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1771-1778. |
[13] | XUE Zhijing, QU Tingting, LIU Chunhui, LIU Xiaokang, WANG Rui, WANG Ning, ZHOU Zhengchao, DONG Zhibao. Contribution of microbial necromass to soil organic carbon formation during litter decomposition under incubation conditions [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1845-1852. |
[14] | CHEN Honglian, LI Rui, ZHANG Yushan, WU Qinglin, YUAN Jiang, GAO Jiayong. Comparison of ecosystem health in different geomorphic regions of Chishui River Basin, Southwest China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1912-1922. |
[15] | LYU Fuze, YANG Yali, BAO Xuelian, ZHANG Changren, ZHENG Tiantian, HE Hongbo, ZHANG Xudong, XIE Hongtu. Effects of no-tillage and different stover mulching amounts on soil microbial community and microbial residue in the Mollisols of China [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 903-912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||