[1] Hu X, Li XJ. Information extraction of subsided cultiva-ted land in high-groundwater-level coal mines based on unmanned aerial vehicle visible bands. Environmental Earth Sciences, 2019, 78: 413 [2] Qu JF, Tan M, Hou YL, et al. Effects of the stability of reclaimed soil aggregates on organic carbon in coal mining subsidence areas. Applied Engineering in Agriculture, 2018, 34: 843-854 [3] 黄昌勇. 土壤学. 北京: 中国农业出版社, 2000: 33, 44-46 [4] Song W, Li JY, Li XJ, et al. Effects of land reclamation on soil organic carbon and its components in reclaimed coal mining subsidence areas. Science of the Total Environment, 2024, 908: 168523 [5] 袁玉琦, 陈瀚阅, 张黎明, 等. 基于多变量与RF算法的耕地土壤有机碳空间预测研究: 以福建亚热带复杂地貌区为例. 土壤学报, 2021, 58(4): 887-899 [6] Bartsch BDA, Rosin NA, Rosas JTF, et al. Space-time mapping of soil organic carbon through remote sensing and machine learning. Soil and Tillage Research, 2025, 248: 106428 [7] Shi P, Six J, Sila A, et al. Towards spatially continuous mapping of soil organic carbon in croplands using multitemporal Sentinel-2 remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193: 187-199 [8] Odebiri O, Mutanga O, Odindi J, et al. Mapping soil organic carbon distribution across South Africa’s major biomes using remote sensing-topo-climatic covariates and concrete autoencoder-deep neural networks. Science of the Total Environment, 2023, 865: 161150 [9] 曹霸, 凌成星. 基于GF-1遥感数据的若尔盖高寒沼泽湿地地上生物量与土壤有机碳密度估算. 遥感技术与应用, 2021, 36(1): 229-236 [10] Xu DY, Chen SC, Zhou Y, et al. Spatial estimation of soil organic matter and total nitrogen by fusing field vis-nir spectroscopy and multispectral remote sensing data. Remote Sensing, 2025, 17: 729 [11] Zhang SM, Zhao GX. A harmonious satellite-unmanned aerial vehicle-ground measurement inversion method for monitoring salinity in coastal saline soil. Remote Sen-sing, 2019, 11: 1700 [12] Zhang ZX, Niu BB, Li XJ, et al. Inversion of soil salinity in China’s Yellow River Delta using unmanned aerial vehicle multispectral technique. Environmental Monitoring and Assessment, 2023, 195: 245 [13] 祝元丽, 王冬艳, 张鹤, 等. 采用无人机载高分辨率光谱仪反演土壤有机碳含量. 农业工程学报, 2021, 37(6): 66-72 [14] 宋奇, 高小红, 宋玉婷, 等. 基于无人机高光谱影像的农田土壤有机碳含量估算: 以湟水流域农田为例. 自然资源遥感, 2024, 36(2): 160-172 [15] 王玮莹, 彭金榜, 朱婉雪, 等. 基于无人机遥感的盐渍化土壤有机质反演方法研究. 地球信息科学学报, 2024, 26(3): 736-752 [16] 孙刚, 黄文江, 陈鹏飞, 等. 轻小型无人机多光谱遥感技术应用进展. 农业机械学报, 2018, 49(3): 1-17 [17] Aldana-Jague E, Heckrath G, Macdonald A, et al. UAS-based soil carbon mapping using VIS-NIR (480-1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 2016, 275: 55-66 [18] 臧玉龙. 基于无人机多光谱遥感的烟田土壤碱解氮和有机碳反演. 硕士论文. 泰安: 山东农业大学, 2024 [19] Diaz-Gonzalez FA, Vuelvas J, Correa CA, et al. Machine learning and remote sensing techniques applied to estimate soil indicators: Review. Ecological Indicators, 2022, 135: 108517 [20] 张智韬, 魏广飞, 姚志华, 等. 基于无人机多光谱遥感的土壤含盐量反演模型研究. 农业机械学报, 2019, 50(12): 151-160 [21] 郝金雨. 基于无人机多光谱影像的土壤含水率检测研究. 硕士论文. 泰安: 山东农业大学, 2023 [22] 吴晓华, 叶进霞, 夏春英, 等. 兖州煤田矿山地质环境现状与治理对策. 煤田地质与勘探, 2008, 36(1): 53-57 [23] 肖武, 陈佳乐, 赵艳玲, 等. 利用无人机遥感反演高潜水位矿区沉陷地玉米叶绿素含量. 煤炭学报, 2019, 44(1): 295-306 [24] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000: 30-34 [25] 刘焕军, 赵春江, 王纪华, 等. 黑土典型区土壤有机质遥感反演. 农业工程学报, 2011, 27(8): 211-215 [26] 吴裕, 申广荣, 刘璐, 等. 土壤有机质高光谱特征及其反演研究. 上海交通大学学报: 农业科学版, 2019, 37(4): 37-44 [27] Zhou JP, Xu YP, Gu XH, et al. High-precision mapping of soil organic matter based on UAV imagery using machine learning algorithms. Drones, 2023, 7: 290 [28] Delgado J, Ferrada H, Navarro CA. A succinct and approximate greedy algorithm for the minimum set cover problem. Journal of Computational Science, 2024, 81: 102378 [29] Jennifer JJ. Feature elimination and comparison of machine learning algorithms in landslide susceptibility mapping. Environmental Earth Sciences, 2022, 81: 489 [30] Chang WF, Wang X, Yang J, et al. An improved CatBoost-based classification model for ecological suitability of blueberries. Sensors, 2023, 23: 1811 [31] Ke GL, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree. [2025-03-22]. https://hal.science/hal-03953007/document [32] Montes C, Kapelan Z, Saldarriaga J. Predicting non-deposition sediment transport in sewer pipes using Random forest. Water Research, 2021, 189: 116639 [33] 全国土壤普查办公室. 中国土壤普查技术. 北京: 农业出版社, 1992: 87 [34] 程亚男, 李新举. 济宁煤矿区采煤塌陷对土壤有机碳的影响. 山东农业科学, 2018, 50(3): 77-82 [35] Radočaj D, Jug I, Vukadinović V, et al. The effect of soil sampling density and spatial autocorrelation on interpolation accuracy of chemical soil properties in arable cropland. Agronomy, 2021, 11: 2430 [36] Wei YA, Ping ZL, Zhao GX, et al. Comparison of sentinel 2A MSI and Landsat 8 OLI for soil organic matter inversion in southwestern Shandong Province, China. Geocarto International, 2022, 37: 8214-8229 [37] 孙问娟, 李新举. 煤矿区土壤有机碳含量的高光谱预测模型. 水土保持学报, 2018, 32(5): 346-351 [38] 谭咏诗, 韦真茜, 肖雁, 等. 基于高光谱和多光谱融合的喀斯特地区石灰土有机碳含量反演. 应用生态学报, 2025, 36(1): 197-207 [39] 余健, 房莉, 方凤满, 等. 徐州高潜水位区采煤塌陷地及其复垦土壤碳变化. 煤炭学报, 2023, 48(7): 2881-2892 [40] 张新乐, 窦欣, 谢雅慧, 等. 引入时相信息的耕地土壤有机质遥感反演模型. 农业工程学报, 2018, 34(4): 143-150, 315 [41] Wei GF, Li Y, Zhang ZT, et al. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms. PeerJ, 2020, 8: e9087 [42] Zhang H, Shi P, Crucil G, et al. Evaluating the capability of a UAV-borne spectrometer for soil organic carbon mapping in bare croplands. Land Degradation & Development, 2021, 32: 4375-4389 [43] Zhu WX, Rezaei EE, Nouri H, et al. Quick detection of field-scale soil comprehensive attributes via the integration of UAV and sentinel-2B remote sensing data. Remote Sensing, 2021, 13: 4716 [44] Xie BQ, Ding JL, Ge XY, et al. Estimation of soil organic carbon content in the Ebinur Lake wetland, Xinjiang, China, based on multisource remote sensing data and ensemble learning algorithms. Sensors, 2022, 22: 2685 [45] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演. 农业工程学报, 2015, 31(5): 107-114 [46] 胡晓, 臧玉龙, 高睿康, 等. 基于无人机多光谱遥感和机器学习的烟田土壤碱解氮估测. 中国烟草科学, 2024, 45(5): 95-103 [47] Duma ZS, Susiluoto J, Lamminpää O, et al. Kf-pls: Optimizing kernel partial least-squares (k-pls) with kernel flows. Chemometrics and Intelligent Laboratory Systems, 2024, 254: 105238 |