Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (5): 1636-1644.doi: 10.13287/j.1001-9332.202005.022
• Original Articles • Previous Articles Next Articles
SONG Xiao1, XU Duan-yang2, HUANG Shao-min1*, HUANG Chen-chen3, ZHANG Shui-qing1, GUO Dou-dou1, ZHANG Ke-ke1, YUE Ke1
Received:
2019-08-26
Online:
2020-05-15
Published:
2020-05-15
Contact:
* E-mail: hsm503@sohu.com
Supported by:
SONG Xiao, XU Duan-yang, HUANG Shao-min, HUANG Chen-chen, ZHANG Shui-qing, GUO Dou-dou, ZHANG Ke-ke, YUE Ke. Nitrogen content inversion of wheat canopy leaf based on ground spectral reflectance data[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1636-1644.
[1] 李长春, 陈鹏, 陆国政, 等. 基于无人机高清数码影像和高光谱遥感数据反演大豆典型生育期氮平衡指数. 应用生态学报, 2018, 29(4): 1225-1232 [Li C-C, Chen P, Lu G-Z, et al. The inversion of nitrogen balance index in typical growth period of soybean based on high definition digital image and hyperspectral data on unmanned aerial vehicles. Chinese Journal of Applied Ecology, 2018, 29(4): 1225-1232] [2] 谭昌伟, 周清波, 齐腊, 等. 水稻氮素营养高光谱遥感诊断模型. 应用生态学报, 2008, 19(6): 1261-1268 [Tan C-W, Zhou Q-B, Qi L, et al. Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status. Chinese Journal of Applied Ecology, 2008, 19(6): 1261-1268] [3] 谌俊旭, 黄山, 范元芳, 等. 单作套作大豆叶片氮素积累与光谱特征. 作物学报, 2017, 43(12): 1835-1844 [Chen J-X, Huang S, Fan Y-F, et al. Remote detection of canopy leaf nitrogen status in soybean by hyperspectral data under monoculture and intercropping systems. Acta Agronomica Sinica, 2017, 43(12): 1835-1844] [4] 白丽敏, 李粉玲, 常庆瑞, 等. SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度. 植物营养与肥料学报, 2018, 24(5): 1178-1184 [Bai L-M, Li F-L, Chang Q-R, et al. Increasing accuracy of hyperspectral remote sensing for total nitrogen of winter wheat canopy by use of SPA and PLS methods. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1178-1184] [5] 徐道青, 刘小玲, 王维, 等. 淹水胁迫下棉花叶片高光谱特征及叶绿素含量估算模型. 应用生态学报, 2017, 28(10): 3289-3296 [Xu D-Q, Liu X-L, Wang W, et al. Hyper-spectral characteristics and estimation mode of leaf chlorophyll content in cotton under water logging stress. Chinese Journal of Applied Ecology, 2017, 28(10): 3289-3296] [6] 宋晓. 小麦冠层反射光谱的角度效应及植株氮素监测研究. 博士论文. 郑州: 河南农业大学, 2016 [Song X. Study of Angle Effect on Spectral Reflectance of Wheat (Triticum aestivum L.) Canopy and Plant Nitrogen Monitoring. PhD Thesis. Zhengzhou: Henan Agricultural University, 2016] [7] 孙小香, 王芳东, 赵小敏, 等. 基于冠层光谱和BP神经网络的水稻叶片氮素浓度估算模型. 中国农业资源与区划, 2019, 40(3): 35-44 [Sun X-X, Wang F-D, Zhao X-M, et al. The estimation models of rice leaf nitrogen concentration based on canopy spectrum and BP neural network. Journal of China Agricultural Resources and Regional Planning, 2019, 40(3): 35-44] [8] He L, Zhang HY, Zhang YS, et al. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 2016, 73: 170-185 [9] Feng W, Zhang HY, Zhang YS, et al. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Research, 2016, 198: 238-246 [10] Song X, Xu DY, He L, et al. Using multi-angle hyperspectral data to monitor canopy leaf nitrogen content of wheat. Precision Agriculture, 2016, 17: 721-736 [11] Guo BB, Qi SL, Heng YR, et al. Remotely assessing leaf N uptake in winter wheat based on canopy hyperspectral red-edge absorption. European Journal of Agro-nomy, 2017, 82: 113-124 [12] 冯伟. 基于高光谱遥感的小麦氮素营养及生长指标监测研究. 博士论文. 南京: 南京农业大学, 2007 [Feng W. Monitoring Nitrogen Status and Growth Cha-racters with Hyperspectral Remote Sensing in Wheat. PhD Thesis. Nanjing: Nanjing Agricultural University, 2007] [13] Mistele B, Schmidhalter U. Estimating the nitrogen nutrition index using spectral canopy reflectance measu-rements. European Journal of Agronomy, 2008, 29: 184-190 [14] Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research, 2011, 124: 74-84 [15] Johnson LF, Billow CR. Spectrometric estimation of total nitrogen concentration in Douglas-fir foliage. Internatio-nal Journal of Remote Sensing, 1996, 17: 489-500 [16] Meroni M, Marinho E, Sghaier N, et al. Remote sensing based yield estimation in a Stochastic framework: Case study of durum wheat in Tunisia. Remote Sensing, 2013, 5: 539-557 [17] Gitelson AA. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 2004, 161: 165-173 [18] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 42-44 [Bao S-D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000: 42-44] [19] Analytical Spectral Devices Inc. FieldSPec Pro User’s Guide. Boulder: Analytical Spectral Devices Inc., 2002 [20] Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81: 337-354 [21] Fitzgerald GJ, Rodriguez D, Christensen LK, et al. Spectral and thermal sensing for nitrogen and water status in two wheat agroecosystems. Precision Agriculture, 2006, 7: 233-248 [22] Feng W, Guo BB, Wang ZJ, et al. Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data. Field Crops Research, 2014, 159: 43-52 [23] Richardson AJ, Wiegand CL. Distinguishing vegetation from soil background information. Engineering and Remote Sensing, 1997, 43: 1541-1552 [24] Feng W, Yao X, Zhu Y, et al. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy, 2008, 28: 394-404 [25] Le Maire G, François C, Soudani K, et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sensing of Environment, 2008, 112: 3846-3864 [26] Li F, Mistele B, Hu YC, et al. Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Ger-many. Agricultural and Forest Meteorology, 2013, 180: 44-57 [27] Tian YC, Yao X, Yang J, et al. Assessing newly deve-loped and published vegetation indices for estimating rice leaf nitrogen concentration with ground and space-based hyperspectral reflectance. Field Crops Research, 2011, 120: 299-310 [28] Gupta R, Vijayan D, Prasad T. Comparative analysis of red-edge hyperspectral indices. Advances in Space Research, 2003, 32: 2217-2222 [29] Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25: 295-309 [30] 武改红. 冬小麦不同叶位叶片高光谱特征及其对氮素的响应. 硕士论文. 太谷: 山西农业大学, 2018 [Wu G-H. Hyperspectral Characteristics and Response on Nitrogen Nutrition Diagnosis for Different Position Leaves of Winter Wheat. PhD Thesis. Taigu: Shanxi Agricultural University, 2018] [31] 赵新飞, 冯嘉敏, 张大伟, 等. 不同生育期水稻光谱反射率的变化规律. 仲恺农学工程学院学报, 2015, 28(4): 26-31 [Zhao X-F, Feng J-M, Zhang D-W, et al. The changes spectral of reflectance of rice at different growth stages. Journal of Zhongkai University of Agriculture and Engineering, 2015, 28(4): 26-31] [32] He L, Zhang HY, Zhang YS, et al. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 2016, 73: 170-185 [33] Song X, Feng W, He L, et al. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 57-67 [34] 张俊华, 张佳宝. 不同生育期冬小麦光谱特征对叶绿素和氮素的响应研究. 土壤通报, 2008, 39(3): 586-592 [Zhang J-H, Zhang J-B. Response of winter wheat spectral reflectance to leaf chlorophyll, total nitrogen of above ground. Chinese Journal of Soil Science, 2008, 39(3): 586-592] [35] Moges SM, Raun WR, Mullen RW, et al. Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield. Journal of Plant Nutrition, 2004, 27: 1431-1441 [36] 程一松, 胡春胜, 郝二波, 等. 氮素胁迫下的冬小麦高光谱特征提取与分析. 资源科学, 2003, 25(1): 86-93 [Cheng Y-S, Hu C-S, Hao E-B, et al. Analysis and extraction of hyperspectral information feature of winter wheat under stress condition. Resources Science, 2003, 25(1): 86-93] [37] Thomas JR, Oerther GF. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agro-nomy Journal, 1972, 64: 11-13 [38] Hatfleld JL, Gitelson AA, Schepers JS, et al. Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 2008, 100: 117-131 [39] Haboudane D, Miller JR, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 2002, 81: 416-426 [40] Ryu C, Suguri M, Umeda M. Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing. Biosystems Engineering, 2009, 104: 465-475 [41] 杨长明, 杨林章, 韦朝领, 等. 不同品种水稻群体冠层光谱征比较研究. 应用生态学报, 2006, 13(6): 689-692 [Yang C-M, Yang L-Z, Wei C-L, et al. Ca-nopy spectral characteristics of different rice varieties. Chinese Journal of Applied Ecology, 2006, 13(6): 689-692] [42] 贾学勤, 冯美臣, 王超, 等. 冬小麦籽粒氮积累量高光谱监测研究. 山西农业科学, 2018, 46(3): 335-338 [Jia X-Q, Feng M-C, Wang C, et al. Study on hyperspectral monitor of grain nitrogen accumulation in winter wheat. Journal of Shanxi Agricultural Sciences, 2018, 46(3): 335-338] [43] Carter G, Knapp A. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 2001, 88: 677-684 |
[1] | CAO Huayan, MIAO Zheng, HAO Yuanshuo, DONG Lihu. Stem moisture content prediction model for Larix olgensis based on beta regression. [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 587-596. |
[2] | HU Ailian, YANG Juan, LIU Baolin, ZOU Yu. Prediction on the changes in potential suitable areas for mangroves along the coast of Guangxi and the threat from Spartina alterniflora invasion [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 669-677. |
[3] | GUO Wei, WANG Nan, ZHANG Kaiyue, SONG Peipei, MA Zhanqiang. Effects of Cu2O nanoparticles on the kinetic characteristics of rapid chlorophyll fluorescence induction and related genes in wheat seedlings [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 721-730. |
[4] | LI Xiangling, CHEN Fengxian, CHEN Xijuan. Prediction of atrazine degradation in soil based on XGBoost model [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 789-796. |
[5] | CAO Xiaomei, MIAO Zheng, HAO Yuanshuo, DONG Lihu. Height-diameter model of broad-leaved mixed forest based on species classification in Maoershan, Northeast China [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 307-320. |
[6] | LI Jiayu, SHI Xiuzhen, LI Shuaijun, WANG Zhenyu, WANG Jianqing, ZOU Bingzhang, WANG Sirong, HUANG Zhiqun. Effects of stand ages on soil enzyme activities in Chinese fir plantations and natural secondary forests [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 339-346. |
[7] | ZUO Yuzhu, PAN Chengzhong, MA Yongxing, MA Lan. Rainfall-runoff partitioning in small watersheds of different vegetation types in the loess area based on hydrogen and oxygen isotope tracing [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 399-406. |
[8] | GAN Wenjing, MO Shangxuan, ZHANG Jianhong, SONG Xianwei, XIAN Jinmei, YANG Lu, NONG Haiqin. Water conservation pattern of Fangcheng River Basin in Beibu Gulf and its response to precipitation [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 407-414. |
[9] | LU Chang, CAI Xueqin, HAO Canshu, LIU Yuzhen, WANG Zhiyu, MA Ya'nan. Ecosystem service tradeoff and synergistic relationship in the Yellow River Delta High-Efficiency Eco-Economic Zone [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 457-468. |
[10] | YUAN Jiayu, Xiong Li, WU Zhiwei, ZHU Shihao, KANG Ping, LI Shun. Characteristics of pine wood nematode disease in Nankang District, Ganzhou, Jiangxi Province, China [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 507-515. |
[11] | WANG Fei, ZHOU Zihan, HAN Dongrui, WANG Meng, WEI Qinggang, LUO Xiubin, GAO Rui, ZHANG Zhuoran, FANG Jingchun. Research progress in parameterizing irrigation and fertilization in land surface model [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 543-554. |
[12] | CAI Hongmei, WANG Feifei, WANG Pengna, TANG Zhiwei, HUANG Weixiang, ZHENG Baoqiang, LI Jincai, CHEN Xiang. Research progress on the method and index evaluating strong seedlings of winter wheat during overwintering stage [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 555-563. |
[13] | LIU Yisheng, HOU Peng, WANG Ping, ZHU Jian. Research advance on quantitative assessment methods of ecosystem water conservation service functions [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 275-288. |
[14] | XIAO Chen, TIAN Dongyuan, MA Rong, DONG Lingbo. Compatibility predictive model for regeneration quantities of Larix gmelinii natural forest in Daxing’anling Mountains, China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2345-2354. |
[15] | LI Changqing, JI Meng, MA Mengmeng, WANG Shuo, LIU Huan, SUN Zhimei. Effects of combined natural synergists and chemical inhibitors on yield, nitrogen utilization and balance in wheat/maize rotation system [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2391-2397. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 367
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 561
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||