
Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (11): 3315-3326.doi: 10.13287/j.1001-9332.202511.007
• Original Articles • Previous Articles Next Articles
ZHANG Shenlin1, WU Tianjun1,2,3, HAN Ling1,2,3, WANG Liuhua1*, SUN Hailian4
Received:2025-06-21
Accepted:2025-09-22
Online:2025-11-18
Published:2025-12-15
ZHANG Shenlin, WU Tianjun, HAN Ling, WANG Liuhua, SUN Hailian. Spatial and temporal variations in grassland aboveground biomass and their drivers in central Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3315-3326.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202511.007
| [1] Buisson E, Archibald S, Fidelis A, et al. Ancient grasslands guide ambitious goals in grassland restoration. Science, 2022, 377: 594-598 [2] Bai YF, Cotrufo MF. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022, 377: 603-608 [3] O'mara FP. The role of grasslands in food security and climate change. Annals of Botany, 2012, 110: 1263-1270 [4] Reinermann S, Asam S, Kuenzer C. Remote sensing of grassland production and management: A review. Remote Sensing, 2020, 12: 1949 [5] Chang JF, Ciais P, Gasser T, et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 2021, 12: 118 [6] Zhou JH, Zhang RP, Guo J, et al. Estimation of aboveground biomass of senescence grassland in China's arid region using multi-source data. Science of the Total Environment, 2024, 918: 170602 [7] Chen P, Wang S, Liu YX, et al. Spatio-temporal dynamics of aboveground biomass in China's oasis grasslands between 1989 and 2021. Earth's Future, 2024, 12: e2023EF003944 [8] Wu HQ, An S, Meng B, et al. Retrieval of grassland aboveground biomass across three ecoregions in China during the past two decades using satellite remote sen-sing technology and machine learning algorithms. International Journal of Applied Earth Observation and Geoinformation, 2024, 130: 103925 [9] Guo R, Gao JL, Fu S, et al. Estimating aboveground biomass of alpine grassland during the wilting period using in situ hyperspectral, Sentinel-2 and Sentinel-1 data. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 1-16 [10] Yang D, Yang ZY, Wen QK, et al. Dynamic monitoring of aboveground biomass in inner Mongolia grasslands over the past 23 years using GEE and analysis of its driving forces. Journal of Environmental Management, 2024, 354: 120415 [11] Shoko C, Mutanga O, Dube T. Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 120: 13-24 [12] Meng BP, Liang TG, Yi SH, et al. Modeling alpine grassland above ground biomass based on remote sen-sing data and machine learning algorithm: A case study in east of the Tibetan Plateau, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2986-2995 [13] Sun J, Wang Y, Piao SL, et al. Toward a sustainable grassland ecosystem worldwide. The Innovation, 2022, 3: 100265 [14] Yao Y, Ren H. Estimation of grassland aboveground biomass in northern China based on topography-climate-remote sensing data. Ecological Indicators, 2024, 165: 112230 [15] Wang ZB, Ma YK, Zhang YN, et al. Review of remote sensing applications in grassland monitoring. Remote Sensing, 2022, 14: 2903 [16] Wu NT, Crusiol LGT, Liu GX, et al. Comparing the performance of machine learning algorithms for estimating aboveground biomass in typical steppe of northern China using Sentinel imageries. Ecological Indicators, 2023, 154: 110723 [17] 周景乐, 徐志高, 何旭升, 等. 草地地上生物量测量方法综述. 中南林业调查规划, 2022, 41(2): 36-40 [18] 王彩玲, 王一鸣. 机理模型与遥感数据同化的草地生物量估算相关研究. 草业科学, 2024, 41(9): 2104-2117 [19] Jia ZY, Zhang ZH, Cheng YX, et al. Grassland biomass spatiotemporal patterns and response to climate change in eastern Inner Mongolia based on XGBoost model estimates. Ecological Indicators, 2024, 158: 111554 [20] Ji SX, Dashpurev B, Phan TN, et al. Above-ground biomass retrieval with multi-source data: Prediction and applicability analysis in Eastern Mongolia. Land Degradation & Development, 2024, 35: 2982-2992 [21] Marino S, Brugiapaglia E, Miraglia N, et al. Modelling of the above-ground biomass and ecological composition of semi-natural grasslands on the strenght of remote sen-sing data and machine learning algorithms. Ecological Informatics, 2024, 82: 102740 [22] Chen A, Xu C, Zhang M, et al. Cross-scale mapping of above-ground biomass and shrub dominance by integrating UAV and satellite data in temperate grassland. Remote Sensing of Environment, 2024, 304: 114024 [23] Morais TG, Teixeira RF, Figueiredo M, et al. The use of machine learning methods to estimate aboveground bio-mass of grasslands: A review. Ecological Indicators, 2021, 130: 108081 [24] 张雨欣, 黄健熙, 金云翔, 等. 草地地上生物量估算模型研究进展. 草地学报, 2022, 30(4): 850-858 [25] Bazzo COG, Kamali B, Hütt C, et al. A review of estimation methods for aboveground biomass in grasslands using UAV. Remote Sensing, 2023, 15: 639 [26] Fassnacht F, Hartig F, Latifi H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 2014, 154: 102-114 [27] 李辉, 红英, 邓国荣, 等. 1982—2015年气候变化和人类活动对内蒙古草地净初级生产力的影响. 应用生态学报, 2021, 32(2): 415-424 [28] Ding L, Li ZW, Shen BB, et al. Spatial patterns and driving factors of aboveground and belowground biomass over the eastern Eurasian steppe. Science of the Total Environment, 2022, 803: 149700 [29] Richardson AJ, Wiegand C. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43: 1541-1552 [30] Jordan CF. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50: 663-666 [31] Liu HQ, Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33: 457-465 [32] Wang C, Chen J, Wu J, et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sensing of Environment, 2017, 196: 1-12 [33] Tucker CJ. Red and photographic infrared linear com-binations for monitoring vegetation. Remote Sensing of Environment, 1979, 8: 127-150 [34] Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25: 295-309 [35] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55: 95-107 [36] Qi JG, Chehbouni A, Huete AR, et al. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48: 119-126 [37] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7: eabc7447 [38] Yang LP, Meng XM, Zhang XQ. SRTM DEM and its application advances. International Journal of Remote Sensing, 2011, 32: 3875-3896 [39] Peng SZ, Ding YX, Liu WZ, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11: 1931-1946 [40] Poggio L, De Sousa LM, Batjes NH, et al. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 2021, 7: 217-240 [41] Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66: 247-259 [42] Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967, 13: 21-27 [43] Zhi QY, Hu XS, Wang P, et al. Estimation, spatiotemporal dynamics, and driving factors of grassland biomass carbon storage based on machine learning methods: A case sudy of the Hulunbuir grassland. Remote Sensing, 2024, 16: 3709 [44] Lundberg S, Lee S. A unified approach to interpreting model predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017: 4768-4777 [45] Li ZQ. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems, 2022, 96: 101845 [46] Wang X, Li YS, Gong YM, et al. Spatiotemporal dynamics and driving mechanism of aboveground biomass across three alpine grasslands in Central Asia over the past 20 years using three algorithms. Remote Sen-sing, 2025, 17: 538 [47] Wang YJ, Liu YX, Chen P, et al. Interannual precipitation variability dominates the growth of alpine grassland above-ground biomass at high elevations on the Tibetan Plateau. Science of the Total Environment, 2024, 931: 172745 [48] Song YZ, Wang JF, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience & Remote Sensing, 2020, 57: 593-610 [49] Wang Z, Wang YC, Liu Y, et al. Spatiotemporal cha-racteristics and natural forces of grassland NDVI changes in Qilian Mountains from a sub-basin perspective. Ecological Indicators, 2023, 157: 111186 [50] Dilmurat K, Sagan V, Maimaitijiang M, et al. Estimating crop seed composition using machine learning from multisensory UAV data. Remote Sensing, 2022, 14: 4786 [51] Vahidi M, Shafian S, Frame WH. Depth-specific soil moisture estimation in vegetated corn fields using a canopy-informed model: A fusion of RGB-thermal drone data and machine learning. Agricultural Water Management, 2025, 307: 109213 [52] Huang TB, Ou GL, Wu Y, et al. Estimating the aboveground biomass of various forest types with high heterogeneity at the provincial scale based on multi-source data. Remote Sensing, 2023, 15: 3550 [53] Xu DW, Wang C, Chen J, et al. The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sensing of Environment, 2021, 264: 112578 [54] 于惠, 杨世君, 李晶, 等. 高寒草地生物量变化对归一化物候指数的响应. 生态学报, 2023, 43(19): 8057-8065 [55] Cai TY, Chang CC, Zhao YB, et al. Within-season estimates of 10 m aboveground biomass based on Landsat, Sentinel-2 and PlanetScope data. Scientific Data, 2024, 11: 1276 [56] Ren HR, Zhou GS, Zhang F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 2018, 209: 439-445 [57] 高晓彤, 徐敏, 田海静, 等. 锡林郭勒盟草地地上生物量时空变化遥感诊断研究. 生态与农村环境学报, 2025, DOI: 10.19741/j.issn.1673-4831.2024.0877 [58] 奎国娴, 史常青, 杨建英, 等. 内蒙古草原区植被覆盖度时空演变及其驱动力. 应用生态学报, 2023, 34(10): 2713-2722 [59] 李京忠, 辛振华, 谢潇, 等. 半干旱区植被覆盖时空变化特征及其对气候变化的响应: 以锡林郭勒盟为例. 应用生态学报, 2024, 35(1): 80-86 [60] 杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响. 植物生态学报, 2018, 42(4): 430-441 [61] Zhou YJ, Liu TX, Batelaan O, et al. Spatiotemporal fusion of multi-source remote sensing data for estimating aboveground biomass of grassland. Ecological Indicators, 2023, 146: 109892 [62] John R, Chen JQ, Giannico V, et al. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sensing of Environment, 2018, 213: 34-48 [63] 秦格霞, 吴静, 李纯斌, 等. 基于机器学习算法的天祝藏族自治县草地地上生物量反演. 草业学报, 2022, 31(4): 177-188 |
| [1] | DING Sicheng, FANG Chao, ZHUOMA Lamu, FENG Zhaozhong. Simulation of farmland soil bulk density and its influencing factors based on machine learning models [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2827-2835. |
| [2] | ZUO Yuxin, LIU Xinjie, JING Xia, TAN Junlei, LIU Liangyun. Estimation of aerosol optical depth based on tower-based hyperspectral observations and machine learning methods [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2845-2852. |
| [3] | HUANG Yang, WANG Duocong, OUYANG Hanli, HAN Jianxun, ZHUANG Chunyi. Identification of driving factors for water supply service in Sichuan Province, Southwest China from a machine learning perspective [J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2171-2182. |
| [4] | WANG Yuxin, ZHENG Ying, GAO Yong, LIU Yanping, YANG Zhenqi, ZHANG Zixuan. Spatio-temporal variations and trade-offs/synergies of typical ecosystem services in Ordos City [J]. Chinese Journal of Applied Ecology, 2025, 36(6): 1661-1670. |
| [5] | HOU Zhuohan, YU Ying, YANG Xiguang. Extraction of forest disturbance information from multi-source and long-term series of remote sensing data [J]. Chinese Journal of Applied Ecology, 2025, 36(6): 1722-1730. |
| [6] | ZHANG Yexiang, CHEN Fengxian, ZHANG Yuhong, CHEN Xijuan. Predicting heavy metal concentration in crop grain using automated machine learning models [J]. Chinese Journal of Applied Ecology, 2025, 36(6): 1889-1897. |
| [7] | XIA Cuifen, ZHOU Wenwu, SHU Qingtai, WANG Mingxing, WU Zaikun, FU Lianjin, REN Chengfang. Estimation of chlorophyll content in Dendrocalamus giganteus based on GEDI data optimized by EBKRP method [J]. Chinese Journal of Applied Ecology, 2025, 36(5): 1319-1329. |
| [8] | ZHAO Qingyun, WANG Xiaojie, ZHANG Qingwen, LONG Xiang, SONG Yang, LU Feng, SONG Jianbin, ZHANG Baohua, HAN Guangxuan. Spatial-temporal variations and driving factors of coastal aquaculture ponds in China from 1985 to 2023 [J]. Chinese Journal of Applied Ecology, 2025, 36(5): 1519-1530. |
| [9] | TAN Jie, WEI Qianjun, LIAO Zhaoyang, KUANG Wenjun, DENG Huiting, YU De. Relationship between urban form and surface temperature based on XGBoost SHAP interpretable machine learning model [J]. Chinese Journal of Applied Ecology, 2025, 36(3): 659-670. |
| [10] | WANG Siquan, PAN Baozhu, YANG Zijie, HU En, ZHANG Xin, LI Gang, ZHAO Dan, HU Jingxiang. Characterization of zooplankton communities and the interspecific relationships among dominant species in the Jinghe River Basin, Northwest China. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 587-595. |
| [11] | LI Jinyu, YU Qing. Landscape pattern characteristics of scenic byway in the Grass Skyline of Bashang Grassland, Hebei Pro-vince, China [J]. Chinese Journal of Applied Ecology, 2025, 36(10): 3126-3138. |
| [12] | TAN Yongshi, WEI Zhenxi, XIAO Yan, HUANG Yulin, LI Zongxin, YANG Shuting, ZOU Lin, YANG Lanhui, DENG Yusong. Inversion of organic carbon content in calcareous soil in karst area based on hyperspectral and multispectral fusion [J]. Chinese Journal of Applied Ecology, 2025, 36(1): 197-207. |
| [13] | JIAO Yan, YAN Feng, LU Qi, WANG Yanjiao. Spatiotemporal variation and driving factors of oases in the arid region of Northwest China [J]. Chinese Journal of Applied Ecology, 2024, 35(8): 2206-2216. |
| [14] | WANG Xiaonan, SU Wenhao, DONG Lingbo. Age estimation model for individual tree in natural Larix gmelinii forest based on random forest model [J]. Chinese Journal of Applied Ecology, 2024, 35(4): 1055-1063. |
| [15] | WEI Yu-chen, ZHAO Mei-fang, ZHU Chang-da, ZHANG Xiu-xiu, PAN Jian-jun. Predicting soil property in hilly regions by using landscape and multiscale micro-landform features [J]. Chinese Journal of Applied Ecology, 2022, 33(2): 467-476. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||