应用生态学报 ›› 2019, Vol. 30 ›› Issue (3): 1035-1046.doi: 10.13287/j.1001-9332.201903.037
陈保冬1,2*, 于萌1,2, 郝志鹏1, 谢伟1,2, 张莘1
收稿日期:
2018-07-03
出版日期:
2019-03-20
发布日期:
2019-03-20
通讯作者:
E-mail: bdchen@rcees.ac.cn
作者简介:
陈保冬,男,1975年生,博士,研究员.主要从事土壤生态学研究. E-mail: bdchen@rcees.ac.cn
基金资助:
CHEN Bao-dong1,2*, YU Meng1,2, HAO Zhi-peng1, XIE Wei1,2, ZHANG Xin1
Received:
2018-07-03
Online:
2019-03-20
Published:
2019-03-20
Supported by:
摘要: 丛枝菌根(AM)共生体系能够改善植物营养状况,增强植物对各种逆境胁迫的耐受性,其在农业和生态环境方面的应用得到广泛关注.近年来,在AM真菌(AMF)应用技术和田间试验方面取得了许多重要成果.本文在介绍AMF种质资源库、商业化菌剂生产及相关专利申报情况的基础上,结合实例从菌剂生产、接种技术、接种效应影响因素等方面综述了AMF应用技术的理论与实践,包括国内外近年来菌根技术在农业、园艺、生态修复等方面的应用,最后提出尚待系统深入研究的 AMF应用领域中的关键科学和技术问题,旨在为菌根技术的发展和推广应用提供参考.
陈保冬, 于萌, 郝志鹏, 谢伟, 张莘. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3): 1035-1046.
CHEN Bao-dong, YU Meng, HAO Zhi-peng, XIE Wei, ZHANG Xin. Research progress in arbuscular mycorrhizal technology[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 1035-1046.
[1] Wagg C, Bender SF, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 5266-5270 [2] Bender SF, Wagg C, van der Heijden MGA. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution, 2016, 31: 440-452 [3] Kuhn G, Hijri M, Sanders IR. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature, 2001, 414: 745-748 [4] Singh RK, Dai O, Nimasow G. Effect of arbuscular mycorrhizal (AM) inoculation on growth of Chili plant in organic manure amended soil. African Journal of Microbiology Research, 2011, 5: 5004-5012 [5] Asmelash F, Bekele T, Birhane E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Frontiers in Microbiology, 2016, 7: 1095, doi: 10.3389/fmicb.2016.01095 [6] Tisserant E, Malbreil M, Kuo A, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Aca-demy of Sciences of the United States of America, 2013, 110: 20117-20122 [7] Kiers ET, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882 [8] Salvioli A, Bonfante P. Systems biology and “omics” tools: A cooperation for next-generation mycorrhizal studies. Plant Science, 2013, 203: 107-114 [9] Gianinazzi S, Gollotte A, Binet MN, et al. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 2010, 20: 519-530 [10] Rillig MC, Aguilar-Trigueros CA, Bergmann J, et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist, 2015, 205:1385-1388 [11] Wang Y-S (王幼珊), Zhang S-B (张淑彬), Zhang M-Q (张美庆). Arbuscular mycorrhizal fungi and germplasm resources in China. Beijing: China Agriculture Press, 2012 (in Chinese) [12] Gerdemann JW, Nicolson TH. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 1963, 46: 235-244 [13] Daniels BA, Skipper HD. Methods for the recovery and quantitative estimation of propagules from soi// Korma-nik PP, eds. Methods and Principles of Mycorrhizal Research. Saint Paul, MI, USA: American Society for Phytopathology, 1982: 29-37 [14] Gilmore AE. Phytomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia, 1968, 39: 87-105 [15] Crush JR, Hay MJ. A technique for growing mycorrhizal clover in solution culture. New Zealand Journal of Agricultural Research, 1981, 24: 371-372 [16] Mosse B. The establishment of vesicular-arbuscular mycorrhiza under asetic conditions. Journal of General Microbiology, 1962, 27: 509-520 [17] Wang Y-S (王幼珊), Liu R-J (刘润进). A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota. Mycosystema (菌物学报),2017, 36(7): 820-850 (in Chinese) [18] Dalpe Y, Monreal M. Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Management, 2004, 3: 1-11 [19] Masula E, Vassilev N. A contribution to set a legal framework for biofertilisers. Appled Microbiology and Biotechnology, 2014, 98: 6599-6607 [20] Berruti A, Lumini E, Balestrini R, et al. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 2015, 6: 1559, doi: 10.3389/fmicb.2015.01559 [21] Herrmann L, Lesueur D. Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 2013, 97: 8859-8873 [22] IJdo M, Cranenbrouck S, Declerck S. Methods for large-scale production of AM fungi: Past, present, and future. Mycorrhiza, 2011, 21: 1-16 [23] Vosátka M, Látr A, Gianinazzi S, et al. Development of arbuscular mycorrhizal biotechnology and industry: Current achievements and bottlenecks. Symbiosis, 2012, 58: 29-37 [24] Oliveira RS, Rocha I, Ma Y, et al. Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.). Journal of Toxicology and Environmental Health Part A, 2016, 79: 329-337 [25] Rasoamampionona B, Rabeharisoa L, Andrianjaka A, et al. Arbuscular mycorrhizae in Malagasy cropping systems. Biological Agriculture & Horticulture, 2008, 25: 327-37 [26] Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-194 [27] Kapulnik Y, Delaux PM, Resnick N, et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 2011, 233: 209-216 [28] Ceballos I, Ruiz M, Fernández C, et al. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One, 2013, 8(8): e70633 [29] Krak K, Janoukov M, Caklov P, et al. Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA. Applied and Environmental Microbiology, 2012, 78: 3630-3637 [30] Selvakumar G, Shagol CC, Kim K, et al. Spores associa-ted bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2018, 18: 109, doi: 10.1186/s12870-018-1317-2 [31] Tian H, Drijber R, Zhang J, et al. Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agriculture, Ecosystems and Environment, 2013, 164: 53-61 [32] Antunes PM, Koch AM, Dunfield KE, et al. Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant and Soil, 2009, 317: 257-266 [33] Zhang X, Chen B, Ohtomo R. Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Science and Plant Nutrition, 2015, 61: 359-368 [34] Ziane H, Meddad-Hamza A, Beddiar A, et al. Effects of arbuscular mycorrhizal fungi and fertilization levels on industrial tomato growth and production. International Journal of Agriculture and Biology, 2017, 19: 341-347 [35] Wu Y-S (吴亚胜), Guo S-R (郭世荣), Sun J (孙 锦), et al. Effects of exogenous spermidine and arbuscular mycorrhizal fungi on plant growth of cucumber. Chinese Journal of Applied Ecology (应用生态学报), 2018, 29(3): 891-898 (in Chinese) [36] Tarraf W, Ruta C, Tagarelli A, et al. Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products, 2017, 107: 144-153 [37] Xie W, Hao Z, Zhou X, et al. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza, 2018, 28: 285-300 [38] Ahmad H, Hayat S, Ali M, et al. The combination of arbuscular mycorrhizal fungi inoculation (Glomus versiforme) and 28-homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (Cucumis sativus L.) under salinity. Ecology and Evolution, 2018, 8: 5724-5740 [39] Domokos E, Jakab-Farkas L, Darko B, et al. Increase in Artemisia annua plant biomass artemisinin content and guaiacol peroxidase activity using the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 2018, 9: 478, doi: 10.3389/fpls.2018.00478 [40] Lehmann A,Veresoglou SD, Rillig MC, et al. Arbuscular mycorrhizal influence on zinc nutrition in crop plants: A meta-analysis. Soil Biology and Biochemistry, 2014, 69: 123-131 [41] Lehmann A, Rillig MC. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops: A meta-analysis. Soil Biology and Biochemistry, 2015, 81: 147-158 [42] Shi W-Q (石伟琦), Ding X-D (丁效东), Zhang S-R (张士荣). Effects of arbuscular mycorrhizal fungi on Leymus chinensis growth and soil carbon. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 2011, 31(2): 357-362 (in Chinese) [43] Zhang Y-X (张延旭), Bi Y-L (毕银丽), Zhang X-Y (张晓燕), et al. Application of arbuscular mycorrhizal fungi and its ecological effect in coal mining subsidence area. Northern Horticulture (北方园艺), 2014, 38(21): 161-164 (in Chinese) [44] Bi YL, Li XL, Wang HG, et al. Establishment of dual culture between vesicular-arbuscular mycorrhizal fungus Sclerocystis sinuosa and transformed Ri T-DNA carrot roots in vitro. Plant and Soil, 2004, 261: 239-243 [45] Chen BD, Xiao XY, Zhu YG, et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 2007, 379: 226-234 [46] Dong Y, Zhu YG, Smith FA, et al. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 2008, 155: 174-181 [47] Li J, Sun Y, Jiang X, Chen B, et al. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicology and Environmental Safety, 2018, 157: 235-243 [48] Nayuki K, Chen BD, Ohtomo R, et al. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using Synchrotron micro X-ray fluorescence. Microbes and Environments, 2014, 29: 60-66 [49] Chen B-D (陈保冬), Li X-L (李晓林), Zhu Y-G (朱永官). Characters of metal adsorption by AM fungal mycelium. Mycosystema, 2005, 24(2): 283-291 (in Chinese) [50] Li J-L (李景龙), Sun Y-Q (孙玉青), Zhang X (张莘), et al. Arbuscular mycorrhizal inoculation and ferrum addition synergistically reduce arsenic accumulation in Oryza sativa. Mycosystema (菌物学报), 2017, 36(7): 1037-1047 (in Chinese) [51] Wu S, Zhang X, Sun Y, et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS. Environmental Science & Technology, 2015, 49: 14036-14047 [52] Wu S, Hu Y, Zhang X, et al. Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environmental and Experimental Botany, 2018, 147: 43-52 [53] Zhang X, Wu S, Ren B, et al. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains. Mycorrhiza, 2016, 26: 299-309 [54] Spagnoletti F, Carmona M, Gómez NET, et al. Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Applied Soil Ecology, 2017, 121: 41-47 [55] Wang J (王 建), Zhou Z-Y (周紫燕), Ling W-T (凌婉婷). Distribution and environmental function of glomalin-related soil protein: A review. Chinese Journal of Applied Ecology (应用生态学报), 2016, 27(2): 634-642 (in Chinese) [56] Verbruggen E, van der Heijden MGA, Rillig MC, et al. Mycorrhizal fungal establishment in agricultural soils: Factors determining inoculation success. New Phytologist, 2013, 197: 1104-1109 [57] McCain KNS, Wilson GWT, Blair JM. Mycorrhizal suppression alters plant productivity and forb establishment in a grass-dominated prairie restoration. Plant Ecology, 2011, 212: 1675-1685 [58] Rosendahl S, McGee P, Morton JB. Lack of global popu-lation genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Molecular Ecology, 2009, 18: 4316-4329 [59] Rouphael Y, Franken P, Schneider C, et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 2015, 196: 91-108 [60] Verbruggen E, van der Heijden MGA, Weedon JT, et al. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology, 2012, 21: 2341-2353 [61] Smith SE, Read DJ. Mycorrhizal Symbiosis. 3rd Ed. London: Academic Press, 2008 [62] Labidi S, Ben JF, Tisserant B, et al. Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza, 2015, 25: 297-309 [63] Hausmann NT, Hawkes CV. Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology, 2010, 91: 2333-2343 [64] Mummey DL, Antunes PM, Rillig MC. Arbuscular mycorrhizal fungi preinoculant identity determines community composition in roots. Soil Biology and Biochemistry, 2009, 41: 1173-1179 [65] Pellegrino E, Bedini S, Avio L, et al. Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biology and Biochemistry, 2011, 43: 367-376 [66] Pellegrino E, Turrini A, Gamper HA, et al. Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytologist, 2012, 194: 810-822 [67] Hijri M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza, 2016, 26: 209-214 [68] Ge Y (葛 源), He J-Z (贺纪正), Zhu Y-G (朱永官), et al. Stable isotope probing and its applications in microbial ecology. Acta ecologica sinica (生态学报), 2006, 26(5): 1574-1582 (in Chinese) [69] He XL, Li YP, Zhao LL. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biology & Biochemistry, 2010, 42: 1313-1319 [70] Azcn R, Rodríguez R, Amora-Lazcano E, et al. Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. European Journal of Soil Science, 2008, 59: 131-138 [71] Herridge F, Hartley E, Gemell G. Rhizobial counts in peat inoculants vary amongst legume inoculant groups at manufacture and with storage: Implications for quality standards. Plant and Soil, 2014, 380: 327-336 [72] Augé RM, Toler HD, Saxton AM. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 2015, 25: 13-24 [73] Xie X, Huang W, Liu F, et al. Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytologist, 2013, 198: 836-852 [74] Neumann E, George E. Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L.). Plant and Soil, 2004, 261: 245-255 [75] Cameron DD, Neal AL, van Wees SCM, et al. Mycorrhiza-induced resistance: More than the sum of its parts? Trends in Plant Science, 2013, 18: 539-545 [76] Hao Z, Fayolle L, van Tuinen D, et al. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. Journal of Experimental Botany, 2012, 63: 3657-3672 [77] Laliberte E. Below-ground frontiers in trait-based plant ecology. New Phytologist, 2017, 213: 1597-1603 [78] Rodriguez A, Sanders IR. The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME Journal, 2015, 9: 1053-1061 |
[1] | 翁凌胤, 栾冬冬, 周大朴, 郭庆港, 王光州, 张俊伶. 利用合成菌群促进作物健康: 进展与展望 [J]. 应用生态学报, 2024, 35(3): 847-857. |
[2] | 林雅超, 郭小平, 李文烨, 杨帆, 罗超, 郝嘉航, 吴禹希. 煤矿排矸场对周边土壤种子库及植被分布格局的影响 [J]. 应用生态学报, 2024, 35(1): 95-101. |
[3] | 于贵瑞, 郝天象, 杨萌. 中国区域生态恢复和环境治理的生态系统原理及若干学术问题 [J]. 应用生态学报, 2023, 34(2): 289-304. |
[4] | 江尚焘, 栗晗, 彭海英, 梅新兰, 陈廷速, 徐阳春, 董彩霞, 沈其荣. 有机肥替代部分化肥对芒果丛枝菌根真菌群落的影响 [J]. 应用生态学报, 2023, 34(2): 481-490. |
[5] | 史加勉, 宋鸽, 刘珊珊, 郑勇. 杉木林土壤丛枝菌根真菌形态特征及孢子相关细菌多样性对模拟氮沉降和干旱的响应 [J]. 应用生态学报, 2023, 34(12): 3291-3300. |
[6] | 孙瑜硕, 常选选, 张雪, 王磊, 曲文杰, 秦伟春, 张波, 牛金帅. 腾格里沙漠东南缘不同植被类型土壤种子库多样性 [J]. 应用生态学报, 2022, 33(9): 2356-2362. |
[7] | 郭玥微, 赵允格, 钱煦坤, 万杨卓群, 王闪闪. 黄土高原三种耐干藓营养繁殖的季节差异及机理 [J]. 应用生态学报, 2022, 33(7): 1738-1746. |
[8] | 宋鸽, 王全成, 郑勇, 贺纪正. 丛枝菌根真菌对大气CO2浓度升高和增温响应研究进展 [J]. 应用生态学报, 2022, 33(6): 1709-1718. |
[9] | 李月灵, 金则新, 罗光宇, 陈超, 孙中帅, 王晓燕. 干旱胁迫下接种丛枝菌根真菌对七子花非结构性碳水化合物积累及C、N、P化学计量特征的影响 [J]. 应用生态学报, 2022, 33(4): 963-971. |
[10] | 曹本福, 姜海霞, 刘丽, 陆引罡, 王茂胜. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展 [J]. 应用生态学报, 2021, 32(9): 3385-3396. |
[11] | 刘云龙, 钱浩宇, 张鑫, 郑成岩, 邓艾兴, 江瑜, 张卫建. 丛枝菌根真菌对豆科作物生长和生物固氮及磷素吸收的影响 [J]. 应用生态学报, 2021, 32(5): 1761-1767. |
[12] | 黄咏明, 蒋迎春, 王志静, 宋放, 何利刚, 田瑞, 吴黎明. 丛枝菌根真菌对植物根腐病的抑制效应及其机制 [J]. 应用生态学报, 2021, 32(5): 1890-1902. |
[13] | 刘蕾, 徐梦, 张国印, 王凌, 孙世友, 茹淑华, 肖广敏, 郜静, 李玭, 马丽敏. 不同轮作模式下设施土壤丛枝菌根真菌群落结构的季相变化 [J]. 应用生态学报, 2021, 32(11): 4095-4106. |
[14] | 吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用 [J]. 应用生态学报, 2020, 31(9): 2923-2934. |
[15] | 李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义 [J]. 应用生态学报, 2020, 31(9): 3216-3226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||