[1] Munns R. Genes and salt tolerance: Bringing them together. New Phytologis, 2005, 167: 645-663 [2] 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45(5): 837-845 [Yang J-S. Development and prospect of the research on salt-affected soils in China. Acta Pedologica Sinica, 2008, 45(5): 837-845] [3] 杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010, 43(8): 1585-1593 [Yang S-P, Wei C-Z, Liang Y-C. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes. Scientia Agricultura Sinica, 2010, 43(8): 1585-1593] [4] 王庆惠, 杨嘉鹏, 向光荣, 等. 盐胁迫对不同基因型棉花苗期光合特性和养分吸收的影响. 中国农业科技导报, 2018, 20(5): 9-15 [Wang Q-H, Yang J-P, Xiang G-R, et al. Effects of salt stress on root morpho-logy and physiological characteristics of potted cotton at seedling stage. Journal of Agricultural Science and Technology, 2018, 20(5): 9-15] [5] Shagufta S, Sobia N, Muhammad A, et al. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions, 2013, 8: 85-96 [6] 吴统贵, 周和锋, 吴明, 等. 旱柳光合作用动态及其与环境因子的关系. 生态学杂志,2008, 27(12): 2056-2061 [Wu T-G, Zhou H-F, Wu M, et al. Dynamics of Salix matsudana photosynthesis and its relations to environmental factors. Chinese Journal of Eco-logy, 2008, 27(12): 2056-2061 [7] 王振华, 孙宏勇, 张喜英, 等. 不同冬小麦品种光合作用对环境因子响应的初步研究. 华北农学报, 2007, 22(1): 9-12 [Wang Z-H, Sun H-Y, Zhang X-Y, et al. Response of photosynthesis of different winter wheat cultivars to environmental factors. Acta Agriculturae Boreali-Sinica, 2007, 22(1): 9-12] [8] 高志奎, 高荣孚, 何俊萍, 等. 温室茄子(Solanum melongena L.)光合数学模型与光合生化模型模拟分析. 生态学报, 2007, 27(6): 2265-2271 [Gao Z-Q, Gao R-F, He J-P, et al. Analysis of photosynthetic simu-lation by a biochemical model or mathematical model in greenhouse egg plant. Acta Ecologica Sinica, 2007, 27(6): 2265-2271] [9] Farquhar GD, Caemmerer SV, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149: 78-90 [10] 张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 2012, 32(18): 5907-5917 [Zhang Y-M, Zhou G-S. Advances in leaf maximum carboxylation rate and its response to environmental factors. Acta Ecologica Sinica, 2012, 32(18): 5907-5917] [11] 唐星林, 曹永慧, 顾连宏, 等. 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 2017, 37(19): 6633-6645 [Tang X-L, Cao Y-H, Gu L-H, et al. Advances in photo-physiological responses of leaves to environmental factors based on the FvCB mo-del. Acta Ecologica Sinica, 2017, 37(19): 6633-6645] [12] Yin X, Struik PC. Theoretical reconsiderations when estimating the mesophyll conductance to CO2 diffusion in leaves of C3 plants by analysis of combined gas exchange and chlorophyll fluorescence measurements. Plant, Cell and Environment, 2009, 32: 1513-1524 [13] Yin X, Struik PC, Romero P, et al. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: A critical appraisal and a new integra-ted approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell and Environment, 2009, 32: 448-464 [14] Archontoulis SV, Yin X, Vos J, et al. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: How conserved are biochemical model parameters among crop species? Journal of Experimental Botany, 2012, 63: 895-911 [15] 唐星林, 周本智, 周燕, 等. 基于FvCB模型的几种草本和木本植物光合生理生化特性. 应用生态学报, 2017, 28(5): 1482-1488 [Tang X-L, Zhou B-Z, Zhou Y, et al. Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model. Chinese Journal of Applied Ecology, 2017, 28(5): 1482-1488] [16] 康华靖, 段世华, 安婷, 等. 基于FvCB模型估算小麦的最大电子传递速率. 麦类作物学报, 2019, 39(11): 1-8 [Kang H-J, Duan S-H, An T, et al. Estimation of maximum electron transport rate of wheat based on FvCB model. Journal of Triticeae Crops, 2019, 39(11): 1-8] [17] Razzaque S, Haque T, Elias SM, et al. Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Scientific Reports, 2017, 7: 46138 [18] 韩吉梅, 张旺锋, 熊栋梁, 等. 植物光合作用叶肉导度及主要限制因素研究进展. 植物生态学报, 2017, 41(8): 914-924 [Han J-M, Zhang W-F, Xiong D-L, et al. Mesophyll conductance and its limiting factors in plant leaves. Chinese Journal of Plant Ecology, 2017, 41(8): 914-924] [19] 周静波, 徐小牛, 张余田, 等. 4种营养液对四季秋海棠‘超奥’生长及开花指标的影响. 植物资源与环境学报, 2013, 22(1): 118-120 [Zhou J-B, Xu X-N, Zhang Y-T, et al. Effect of four nutrient solutions on growth and flowering indexes of Begonia cucullata ‘Super Olympi’. Journal of Plant Resources and Environment, 2013, 22(1): 118-120] [20] 梁星云, 刘世荣. FvCB生物化学光合模型及A-Ci曲线测定. 植物生态学报, 2017, 41(6): 693-706 [Liang X-Y, Liu S-R. A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves. Chinese Journal of Plant Ecology, 2017, 41(6): 693-706] [21] Yin X, Struik PC. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: From leaf biochemistry to canopy physiology and crop ecology. Journal of Experimental Botany, 2015, 66: 6535-6549 [22] Kosugi Y, Shibata S, Kobashi S. Parameterization of the CO2 and H2O gas exchange of several temperate deci-duous broad-leaved trees at the leaf scale considering seasonal changes. Plant, Cell and Environment, 2003, 26: 285-301 [23] Harley PC, Loreto F, Marco GD, et al. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology, 1992, 98: 1429-1436 [24] Niinemets U, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist, 2015, 205: 973-993 [25] Mcmurtrie RE, Wang YP. Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures. Plant, Cell and Environment, 1993, 16: 1-13 [26] Bernacchi CJ, Portis AR, Nakano H, et al. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology, 2002, 130: 1992-1998 [27] Medlyn BE, Loustau D, Delzon S. Temperature response of parameters of a biochemically based model of photosynthesis. Ⅰ. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant, Cell and Environment, 2002, 25: 1155-1165 [28] June T, Evans JR, Farquhar GD. A simple new equation for the reversible temperature dependence of photosynthetic electron transport: A study on soybean leaf. Functional Plant Biology, 2004, 31: 275-283 [29] Von Caemmerer S, Griffiths H. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant, Cell and Environment, 2009, 32: 567-576 [30] 贺少轩, 梁宗锁, 蔚丽珍, 等. 土壤干旱对2个种源野生酸枣幼苗生长和生理特性的影响. 西北植物学报, 2009, 29(7): 1387-1393 [He S-X, Liang Z-S, Wei L-Z, et al. Growth and physiological characteristics of wild sour jujube seedlings from two provenances under soil water stress. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7): 1387-1393] [31] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345 [32] 齐学礼, 胡琳, 董海滨, 等. 强光高温同时作用下不同小麦品种的光合特性. 作物学报, 2008, 34(12): 2196-2201 [Qi X-L, Hu L, Dong H-B, et al. Characteristics of photosynthesis in different wheat cultivars under high light intensity and high temperature stresses. Acta Agronomica Sinica, 2008, 34(12): 2196-2201] [33] 孙璐, 周宇飞, 李丰先, 等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16): 3265-3272 [Sun L, Zhou Y-F, Li F-X, et al. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272] [34] 杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理. 世界科技研究与发展, 2006, 28(4): 70-76 [Yang S-H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance. World Sci-tech R&D, 2006, 28(4): 70-76] [35] Sharif I, Aleem S, Farooq J, et al. Salinity stress in cotton: Effects, mechanism of tolerance and its management strategies. Physiology and Molecular Biology of Plants, 2019, 25: 807-820 [36] 吾木提汗. 豆科植物骆驼刺盐胁迫适应性研究. 硕士论文. 新疆农业大学, 2011 [Wu M-T-H. Study on the Salt Stress Adaptaion of Leguminous Plant Alhagi pseu-doalhagi. Master Thesis. Urumqi: Xinjiang Agricultural University, 2011] [37] 边甜甜, 颜坤, 韩广轩, 等. 盐胁迫下菊芋根系脱落酸对钠离子转运和光系统Ⅱ的影响. 应用生态学报, 2020, 31(2): 508-514 [Bian T-T, Yan K, Han G-X, et al. Effects of root abscisic acid on Na+ transport and photosystem Ⅱ in Helianthus tuberosus under salt stress. Chinese Journal of Applied Ecology, 2020, 31(2): 508-514] [38] Galmes J, Medrano H, Flexas J. Acclimation of Rubisco specificity factor to drought in tobacco: Discrepancies between in vitro and in vivo estimations. Journal of Experimental Botany, 2006, 57: 3659-3667 [39] 杨春武, 李长有, 张美丽, 等. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5): 1000-1005 [Yang C-W, Li C-Y, Zhang M-L, et al. pH and ion balance in wheat-wheatgrass under salt- or alkali stress. Chinese Journal of Applied Ecology, 2008, 19(5): 1000-1005] [40] 宁建凤, 郑青松, 杨少海, 等. 高盐胁迫对罗布麻生长及离子平衡的影响. 应用生态学报, 2010, 21(2): 325-330 [Ning J-F, Zheng Q-S, Yang S-H, et al. Impact of high salt stress on Apocynum venetum growth and ionic homeostasis. Chinese Journal of Applied Ecology, 2010, 21(2): 325-330] [41] Sun Y, Gu L, Dickinson RE, et al. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant, Cell and Environment, 2014, 37: 978-994 [42] Ethier GJ, Livingston NJ. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell and Environment, 2004, 27: 137-153 |