[1] 穆永光. 盐碱胁迫对紫穗槐生长和生理的影响. 博士论文. 长春: 东北师范大学, 2016 [Mu Y-G. Effect of Saline-alkali Stress on Growth and Physiology of Amorpha fruticosa. PhD Thesis. Changchun: Northeast Normal University, 2016] [2] Kim JJ, Park SJ, Kim YH, et al. Overexpression of a proton pumping gene OVP1 enhances salt stress tole-rance, root growth and biomass yield by regulating ion balance in rice (Oryza sativa L.). Environmental and Experimental Botany, 2020, 175: 104033 [3] Bashan Y, de-Bashan LE, Prabhu SR, et al. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant and Soil, 2014, 378: 1-33 [4] 邱天, 张丽辉. 植物促生菌促进盐生环境植物生长的研究进展. 北方园艺, 2017(24): 198-204 [Qiu T, Zhang L-H. Research progress on use of plant growth-promoting rhizobacteria (PGPR) to improve plant growth under saline conditions. Northern Horticulture, 2017(24): 198-204] [5] 党雯, 郜春花, 张强, 等. 解钾菌的研究进展及其在农业生产中的应用. 山西农业科学, 2014, 42(8): 921-924 [Dang W, Gao C-H, Zhang Q, et al. Research progress of silicate bacteria and its application in agricultural production. Journal of Shanxi Agricultural Sciences, 2014, 42(8): 921-924] [6] Bagyalakshmi B, Ponmurugan P, Balamurugan A. Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian tea plantation soil. Biocatalysis and Agricultural Biotechnology, 2017, 12: 116-124 [7] Bakhshandeh E, Pirdashti H, Lendeh KS. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering, 2017, 103: 164-169 [8] Sugumaran P, Janarthanam B. Solubilization of pota-ssium containing minerals by bacteria and their effect on plant growth. World Journal of Agricultural Sciences, 2007, 3: 350-355 [9] Prajapati K, Sharma MC, Modi HA. Growth promoting effect of potassium solubilizing microorganisms on Okra (Abelmoscus esculantus). International Journal of Agricultural Science and Research, 2013, 3: 181-188 [10] 黄建成, 桂林国. 宁夏碱性土壤施肥技术对枸杞生长和土壤的影响. 宁夏农林科技, 2015, 56(11): 29-31 [Huang J-C, Gui L-G. Effects on growth of Chinese wolfberry and soil by Ningxia alkaline soil fertilization technology. Ningxia Journal of Agriculture and Forestry Science and Technology, 2015, 56(11): 29-31] [11] 刘碧荣, 董宽虎, 李刚. 不同处理对鸡峰黄芪种子萌发的影响. 草业科学, 2014, 31(8): 1493-1497 [Liu B-R, Dong K-H, Li G. Effects of different treatments on seeds germination of Astragalus kifonsanicus. Pratacultural Science, 2014, 31(8): 1493-1497] [12] 毕银丽, 孙欢, 郭楠, 等. 不同基质和菌种组合对丛枝菌根真菌扩繁效果的影响. 应用与环境生物学报, 2017, 23(4): 616-621 [Bi Y-L, Sun H, Guo N, et al. Propagate-effects of different substrates and strain combinations on arbuscular mycorrhizal fungi. Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 616-621] [13] Kumar A, Ral LC. Soil organic carbon and phosphorus availability regulate abundance of culturable phosphate-solubilizing bacteria in paddy fields. Pedosphere, 2020, 30: 405-413 [14] 张腾国, 李巧丽, 刁志宏, 等. 盐及干旱胁迫对油菜抗氧化系统和Rbohc、RbohF基因表达的影响. 应用生态学报, 2019, 30(3): 969-978 [Zhang T-G, Li Q-L, Diao Z-H, et al. Effects of salt and drought stresses on antioxidant system and Rbohc and RbohF genes expression in Brassica campestris. Chinese Journal of Applied Ecology, 2019, 30(3): 969-978] [15] Li HY, Qiu YZ, Ya T, et al. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 2020, 199: 104577 [16] 张潭, 唐达, 李思思. 盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响. 西北植物学报, 2017, 37(12): 2474-2482 [Zhang T, Tang D, Li S-S. Responses of growth and photosynthesis of Lycium barbarum L. seedling to salt-stress and alkali-stress. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(12): 2474-2482] [17] 朱娟娟. 玉米氮素营养无损诊断及水氮效应. 博士论文. 杨凌: 西北农林科技大学, 2012 [Zhu J-J. The Non-destructive Diagnosis of Corn Nitrogen Status and the Effects of Soil Moisture and Nitrogen Supply on Corn. PhD Thesis. Yangling: Northwest A&F University, 2012] [18] Ansari FA, Ahmad I. Fluorescent Pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attri-butes. Scientific Reports, 2019, 9: 45-47 [19] Qiao L, Zhang ZY, Chen LS, et al. Detection of chlorophyll content in maize canopy from UAV imagery. International Federation of Automatic Control, 2019, 52-30: 330-335 [20] 张雯莉, 刘玉冰, 刘立超. 2种枸杞叶片对混合盐胁迫的生理响应. 西北植物学报, 2018, 38(4): 706-712 [Zhang W-L, Liu Y-B, Liu L-C. Physiological response of two kinds of Lycium barbarum leaves to mixed salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(4): 706-712] [21] 孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展. 草地学报, 2020, 28(5): 1203-1215 [Sun Y-Y, Chen J, Wang Y, et al. Advances in growth promotion mechanisms of PGPRs and their effects on improving plant stress tolerance. Acta Agrestia Sinica, 2020, 28(5): 1203-1215] [22] Huang JL, Liu ZB, Li SY, et al. Isolation and enginee-ring of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. Journal of General and Applied Microbiology, 2016, 62: 258-265 [23] Nadeem SM, Zahir ZA, Arshad M, et al. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology, 2009, 55: 1302-1309 [24] 邢永秀, 莫遥, 罗丽静, 等. 接种固氮菌Klebsiella sp. 120对甘蔗光合特性和主要矿质营养元素含量的影响. 植物营养与肥料学报, 2015, 21(2): 467-474 [Xiong Y-X, Mo Y, Luo L-J, et al. Effects of inoculating nitrogen fixing bacteria Klebsiella sp. 120 on photosynthetic characteristics and mineral nutrient contents of sugarcane. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 467-474] [25] 朱娟娟, 马海军. 硒对铜胁迫酿酒葡萄幼苗生理特性的影响. 南方农业学报, 2018, 49(1): 91-97 [Zhu J-J, Ma H-J. Effects of selenium on physiological cha-racteristics of wine grape seedling under copper stress. Journal of Southern Agriculture, 2018, 49(1): 91-97] [26] Kang CH, Kyung YE, Muthusamy M, et al. Blue LED light irradiation enhances L-ascorbic acid content while reducing reactive oxygen species accumulation in Chinese cabbage seedlings. Scientia Horticulturae, 2020, 261: 108924 [27] Meyer S, Cerovic ZG, Goulas Y, et al. Relationships between optically assessed polyphenols and chlorophyll contents and leaf mass per area ratio in woody plants: A signature of the carbon-nitrogen balance within leaves. Plant, Cell and Environment, 2006, 29: 1338-1348 [28] Cartelat A, Cerovic ZG, Goulas Y, et al. Optically assessed contents of leaf polyphenolics and chlorophyll asindicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research, 2005, 91: 35-49 [29] 李璇, 岳红, 王升, 等. 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013, 38(7): 973-978 [Li X, Yue H, Wang S, et al. Research of different effects on activity of plant antioxidant enzymes. China Journal of Chinese Materia Medica, 2013, 38(7): 973-978] [30] 马绍英, 马蕾, 徐勃, 等. 盐胁迫下根瘤共生豌豆植株对外源钙的生理响应. 应用生态学报, 2020, 31(3): 969-977 [Ma S-Y, Ma L, Xu B, et al. Physiological responses of symbiotic rhizobium pea to exogenous calcium under salt stress. Chinese Journal of Applied Ecology, 2020, 31(3): 969-977] [31] Boominathan U, Sivakumar PK. Effect of seed priming with native PGPR on its vital seedling and antioxidant enzyme activities in Curcuma longa (L.). International Journal of Pharmaceutics Biology Archives, 2012, 3: 372-376 [32] Zhang QW, Song XM, Bartels D. Sugar metabolism in the desiccation tolerant grass Oropetium thomaeum in response to environmental stresses. Plant Science, 2018, 270: 30-36 [33] Boriboonkaset T, Theerawitaya C, Yamada N, et al. Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma, 2013, 250: 1157-1167 [34] 韩丽霞, 欧阳敦君, 刘文静, 等. 盐碱胁迫对流苏幼苗的生理影响. 东北林业大学学报, 2020, 48(7): 11-16 [Han L-X, Ouyang D-J, Liu W-J, et al. Physiological response of threshold of chionanthus retusue seedlings under salt-alkali stress. Journal of Northeast Forestry University, 2020, 48(7): 11-16] [35] Marco B, Andrea S, Monica B, et al. Physiological and biochemical responses to salt stress in cultivated eggplant (Solanum melongena L.) and in S. insanum L., a close wild relative. Agronomy, 2020, 10: 651 [36] 鲁少尉, 齐飞, 李天来. 盐胁迫对番茄果实糖含量及蔗糖代谢的影响. 中国蔬菜, 2012(20): 56-61 [Lu S-W, Qi F, Li T-L. Effects of salt stress on sugar content and sucrose metabolism in tomato fruit. China Vegetables, 2012(20): 56-61] |