[1] Zelm E, Zhang YX, Testerink C. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 2020, 71: 403-433 [2] 李建国, 濮励杰, 朱明, 等. 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012, 67(9): 1233-1245 [3] Liang WJ, Ma XL, Wan P, et al. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 2018, 495: 286-291 [4] 余海英, 李廷轩, 周健民. 设施土壤次生盐渍化及其对土壤性质的影响. 土壤, 2005, 37(6): 581-586 [5] Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005, 309: 1387-1390 [6] Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 11512-11519 [7] He JZ, Ge Y, Xu ZH, et al. Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. Journal of Soils and Sediments, 2009, 9: 547-554 [8] 李晶, 刘玉荣, 贺纪正, 等. 土壤微生物对环境胁迫的响应机制. 环境科学学报, 2013, 33(4): 959-967 [9] 戴雅婷, 闫志坚, 解继红, 等. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究. 土壤学报, 2017, 54(3): 735-748 [10] 孙建平, 刘雅辉, 左永梅, 等. 盐地碱蓬根际土壤细菌群落结构及其功能. 中国生态农业学报, 2020, 28(10): 1618-1629 [11] Rath KM, Fierer N, Murphy DV, et al. Linking bacterial community composition to soil salinity along environmental gradients. ISME Journal, 2019, 13: 836-846 [12] Li YQ, Chai YH, Wang XS, et al. Bacterial community in saline farmland soil on the Tibetan Plateau: Responding to salinization while resisting extreme environments. BMC Microbiology, 2021, 21: 119 [13] Xu Y, Zhang ZM, Ding H, et al. Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community diversity of peanut. Archives of Micro-biology, 2022, 204: 15 [14] Zuo JJ, Zu MT, Liu L, et al. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biology, 2021, 21: 127 [15] Kaur J, Sharma J. Orchid root associated bacteria: Linchpins or accessories? Frontiers in Plant Science, 2021, 12: 661966 [16] 任风鸣, 刘艳, 李滢, 等. 白及属药用植物的资源分布及繁育. 中草药, 2016, 47(24): 4478-4487 [17] 邓文祥, 赵漫丽, 李永梅, 等. 白及根部内生真菌多样性研究. 菌物学报, 2019, 38(11): 1907-1917 [18] 潘晶, 黄翠华, 彭飞, 等. 植物根际促生菌诱导植物耐盐促生作用机制. 生物技术通报, 2020, 36(9): 75-87 [19] 白晶芝, 赵源, 吴凤芝. 盐碱胁迫对黄瓜嫁接苗根际土壤细菌和真菌群落结构及丰度的影响. 中国生态农业学报, 2017, 25(11): 1626-1635 [20] 赵娇, 谢慧君, 张建. 黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析. 环境科学, 2020, 41(3): 1449-1455 [21] 郁进元, 何岩, 赵忠福, 等. 长宽法测定作物叶面积的校正系数研究. 江苏农业科学, 2007(2): 37-39 [22] 袁秀云, 许申平, 周一冉, 等. 遮荫对白及形态及叶片结构的影响. 植物研究, 2021, 41(6): 974-981 [23] 高程, 黄满荣, 陶爽, 等. 北京城区不同水质水体可培养细菌数量的季节动态变化. 生态学报, 2011, 31(4): 1157-1163 [24] 申云鑫, 沈广材, 包玲凤, 等. 烟草青枯病病株根际土壤可培养细菌多样性特征分析. 西南农业学报, 2022, 35(4): 871-878 [25] 王继莲, 李明源, 周茜, 等. 盐胁迫下植物与根际微生物互作研究进展. 北方园艺, 2021(17): 143-149 [26] Xu DL, Pan YC, Chen JS. Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata. Frontiers in Pharmacology, 2019, 10: 1168 [27] Xiao CH, Xu CY, Zhang JQ, et al. Soil microbial communities affect the growth and secondary metabolite accumulation in Bletilla striata (Thunb.) Rchb. f. Frontiers in Microbiology, 2022, 13: 916418 [28] 钟程, 田鑫, 冉露霞, 等. 水杨酸对盐胁迫下白及幼苗的缓解效应. 现代园艺, 2022, 45(15): 54-57 [29] Bell T, Newman JA, Silverman BW, et al. The contribution of species richness and composition to bacterial services. Nature, 2005, 436: 1157-1160 [30] 吴昌昊, 刘敬泽. 根际微生物影响因素及其与植物互作研究进展. 河北师范大学学报:自然科学版, 2022, 46(6): 603-613 [31] Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 2009, 14: 1-4 [32] Li XZ, Sun P, Zhang YN, et al. A novel PGPR strain Kocuria rhizophilaY1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environmental and Experimental Botany, 2020,174: 104023 [33] Kielak A, Pijl AS, Veen JA, et al. Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiology Ecology, 2008,63: 372-382 [34] 徐扬, 张冠初, 丁红, 等. 干旱与盐胁迫对花生根际土壤细菌群落结构和花生产量的影响. 应用生态学报, 2020, 31(4): 1305-1313 [35] Ullah A, Akbar A, Luo QQ, et al. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microbial Ecology, 2019, 77: 429-439 [36] Wu LK, Wang JY, Wu HM, et al. Comparative meta-genomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture. International Journal of Molecular Sciences, 2018, 19: 2394 |