
应用生态学报 ›› 2020, Vol. 31 ›› Issue (10): 3589-3596.doi: 10.13287/j.1001-9332.202010.040
• 综合评述 • 上一篇
孙思淼1,2, 常伟1,2, 宋福强1,2*
收稿日期:2020-02-15
接受日期:2020-07-22
出版日期:2020-10-15
发布日期:2021-04-15
通讯作者:
* E-mail: 0431sfq@163.com
作者简介:孙思淼, 女, 1996年生, 硕士研究生. 主要从事修复生态学研究. E-mail: 550456722@qq.com
基金资助:SUN Si-miao1,2, CHANG Wei1,2, SONG Fu-qiang1,2*
Received:2020-02-15
Accepted:2020-07-22
Online:2020-10-15
Published:2021-04-15
Contact:
* E-mail: 0431sfq@163.com
Supported by:摘要: 土地盐渍化是在自然环境和人为活动的双重作用下形成的全球性的重要生态问题,其会对植物造成渗透失衡、离子胁迫、氧化损伤等危害,导致植物生长缓慢、生物量减少甚至是绝产。丛枝菌根真菌(AMF)是一种普遍存在于土壤中的有益微生物,能够与大多数植物根系形成共生关系,其共生关系在多种逆境生态系统中均具有重要生态意义。AMF-植物共生体具有高效抗氧化系统,能够提高植物在盐胁迫下的抗氧化反应进而增强耐盐性。本文从氧化损伤、渗透调节、抗氧化机制和生物活性分子等角度,系统地阐述了丛枝菌根真菌提高植物抗氧化机制的研究进展,并提出了研究展望,以期为利用菌根生物技术提高植物耐盐性提供理论参考。
孙思淼, 常伟, 宋福强. 丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展[J]. 应用生态学报, 2020, 31(10): 3589-3596.
SUN Si-miao, CHANG Wei, SONG Fu-qiang. Mechanism of arbuscular mycorrhizal fungi improve the oxidative stress to the host plants under salt stress: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3589-3596.
| [1] Yi D, Schwinghamer T, Dalpé Y, et al. The response of spring wheat cultivars to arbuscular mycorrhizal colonization under salinity stresses. Sustainable Agriculture Research, 2017, 6: 58-65 [2] Mishra VP, Kaur A, Singh P, et al. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. Journal of Environmental Management, 2020, 257: 109982, doi: 10.1016/j.jenvman.2019.109982 [3] Balliu A, Sallaku G, Rewald B. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustai-nability, 2015, 7: 15967-15981 [4] Evelin H, Devi TS, Gupta S, et al. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 2019, 10: 470, doi: 10.3389/fpls.2019.00470 [5] Meça E, Sallaku G, Balliu A. Artificial inoculation of AM fungi improves nutrient uptake efficiency in salt stressed pea (Pissum sativum L) plants. Journal of Agricultural Studies, 2016, 4: 37-46 [6] Ilangumaran G, Smith DL. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science, 2017, 8: 1768, doi: 10.3389/fpls.2017.01768 [7] 杨海霞, 郭绍霞, 刘润进. 盐碱地生境中丛枝菌根真菌多样性与功能变化特征. 应用生态学报, 2015, 26(1): 311-320 [Yang H-X, Guo S-X, Liu R-J. Chara-cteristics of arbuscular mycorrhizal fungal diversity and functions in saline-alkali land. Chinese Journal of Applied Ecology, 2015, 26(1): 311-320] [8] Bhale U. Biomass productivity and arbuscular mycorrhizal fungal (AMF) association of ashwagandha (Withania somnifera L.). International Journal of Research in Plant Science, 2015, 5: 21-25 [9] Evelin H, Kapoor R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza, 2014, 24: 197-208 [10] Pankaj U, Singh DN, Singh G, et al. Microbial inoculants assisted growth of Chrysopogon zizanioides promotes phytoremediation of salt affected soil. Indian Journal of Microbiology, 2019, 59: 137-146 [11] Abeer H, Abd Allah EF, Alqarawi AA, et al. Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pakistan Journal of Botany, 2015, 47: 327-340 [12] 任承钢, 孔存翠, 李岩, 等. 丛枝菌根真菌-植物共生体耐盐机制的研究进展. 中国科学: 生命科学, 2016, 46(9): 1062-1068 [Ren C-G, Kong C-C, Li Y, et al. Advances in salt tolerance ability of arbuscular mycorrhizal fungi-plant symbionts. Scientia Sinica Vitae, 2016, 46(9): 1062-1068] [13] Ye L, Zhao X, Bao EC, et al. Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystemⅡ activities and stress-response gene expressions under salinity-alkalinity stresses. Frontiers in Plant Science, 2019, 10: 863, doi: 10.3389/fpls.2019.00863 [14] Elhindi KM, El-din AS, Elgorban AM. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences, 2017, 24: 170-179 [15] Pandey R, Garg N. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. geno-types grown under salinity stress. Mycorrhiza, 2017, 27: 669-682 [16] Wu N, Li Z, Wu F, et al. Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt. Scientific Reports, 2016, 6: 37663, doi: 10.1038/srep37663 [17] Kong L, Gong X, Zhang X, et al. Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition. Journal of Plant Nutrition, 2020, 43: 682-698 [18] Alqarawi AA, Abd Allah EF, Hashem A. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. Journal of Plant Interactions, 2014, 9: 802-810 [19] Yang X, Yu HQ, Zhang T, et al. Arbuscular mycorrhizal fungi improve the antioxidative response and the seed production of Suaedoideae species Suaeda physophora Pall under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44: 533-540 [20] 贾婷婷, 常伟, 范晓旭, 等. 盐胁迫下AM真菌对沙枣苗木光合与叶绿素荧光特性的影响. 生态学报, 2018, 38(4): 1337-1347 [Jia T-T, Chang W, Fan X-X, et al. Effects of arbuscular mycorrhizal fungi on photosynthetic and chlorophyll fluorescence characteristics in Elaeagnus angustifolia seedlings under salt stress. Acta Ecologica Sinica, 2018, 38(4): 1337-1347] [21] 孙玉芳, 宋福强, 常伟, 等. 盐碱胁迫下AM真菌对沙枣苗木生长和生理的影响. 林业科学, 2016, 52(6): 18-27 [Sun Y-F, Song F-Q, Chang W, et al. Effect of arbuscular mycorrhizal fungi on growth and physiology of Elaeagnus angustifolia seedlings subjected to salinity stress. Scientia Silvae Sinicae, 2016, 52(6): 18-27] [22] Xu HW, Lu Y, Zhu XC. Effects of arbuscular mycorrhiza on osmotic adjustment and photosynthetic physiology of maize seedlings in black soils region of northeast China. Brazilian Archives of Biology and Technology, 2016, 59: e160392, doi: 10.1590/1678-4324-2016160392 [23] Asrar AWA, Abdel-fattah GM, Elhindi KM, et al. The impact of arbuscular mycorrhizal fungi in improving growth, flower yield and tolerance of kalanchoe (Kalanchoe blossfeldiana Poelin) plants grown in NaCl-stress conditions. Journal of Food, Agriculture & Environment, 2014, 12: 105-112 [24] Talaat NB, Shawky BT. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany, 2014, 98: 20-31 [25] 李少朋, 陈昢圳, 刘惠芬, et al. 丛枝菌根提高滨海盐碱地植物耐盐性的作用机制及其生态效应. 生态环境学报, 2019, 28(2): 411-418 [Li S-P, Chen P-Z, Liu H-F, et al. Mechanism and ecological effects of arbuscular mycorrhizal fungi on improving salt tolerance of plants in coastal saline-alkaline land. Ecology and Environmental Sciences, 2019, 28(2): 411-418] [26] 李倩, 郑爱琴, 马玉一, 等. AMF对紫花苜蓿抗盐生理特性的影响. 草原与草坪, 2017, 37(5): 85-91 [Li Q, Zheng A-Q, Ma Y-Y, et al. Effect of AMF on salt resistance characteristics of alfalfa. Grassland and Turf, 2017, 37(5): 85-91] [27] Porcel R, Aroca R, Ruiz-lozano JM. Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agronomy for Sustainable Development, 2012, 32: 181-200 [28] Bhattacharjya S. Arbuscular mycorrhizal fungi: A potential tool for enhancing crop productivity in salt affected soil. International Journal of Agriculture Environment and Biotechnology, 2018, 11: 871-880 [29] 贾婷婷, 宋福强. 丛枝菌根提高植物耐盐性的研究进展. 土壤通报, 2016, 47(6): 1499-1505 [Jia T-T, Song F-Q. Research progress on mechanism of plant salt tolerance enhanced by arbuscular mycorrhizal. Chinese Journal of Soil Science, 2016, 47(6): 1499-1505] [30] Tigka T, Ipsilantis I. Effects of sand dune, desert and field arbuscular mycorrhizae on lettuce (Lactuca sativa L.) growth in a natural saline soil. Scientia Horticulturae, 2020, 264: 109191, doi: 10.1016/j.scienta.2020.109191 [31] Taniguchi T, Acharya K, Imada S, et al. Arbuscular mycorrhizal colonization of Tamarix ramosissima along a salinity gradient in the southwestern united states. Landscape and Ecological Engineering, 2015, 11: 221-215 [32] Dudhane MP, Borde MY, Jite PK. Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition. Notulae Scientia Biologicae, 2011, 3: 71-78 [33] Krishnamoorthy R, Kim K, Subramanian P, et al. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agriculture, Ecosystems and Environment, 2016, 231: 233-239 [34] Kumar A, Sharma S, Mishra S, et al. Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2SO4 salt stress. Giornale Botanico Italiano, 2015, 149: 260-269 [35] 潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制. 地球科学进展, 2018, 33(4): 361-372 [Pan J, Huang C-H, Luo J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants. Advances in Earth Science, 2018, 33(4): 361-372] [36] Younesi O, Moradi A. Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agriculture, 2014, 60: 10-21 [37] 高璿濛, 王玉丹, 杨春雪. 松嫩盐碱草地蒲公英根围AM真菌侵染特性及种类多样性. 中国农业大学学报, 2019, 24(5): 90-97 [Gao R-M, Wang Y-D, Yang C-X. Mycorrhizal fungal infection characteristics and the diversity of Taraxacum mongolicum rhizosphere in Songnen saline-alkaline grassland. Journal of China Agricultural University, 2019, 24(5): 90-97] [38] 许炜萍, 谢晓红, 黄志, 等. AMF对弱光及盐胁迫下甜瓜生长和抗氧化酶活性的影响. 西北植物学报, 2017, 37(9): 1781-1788 [Xu W-P, Xie X-H, Huang Z, et al. Physiological responses of melon(Cucumis melo L.) seedlings to Glomus under low light and salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1781-1788] [39] Chang W, Sui X, Fan XX, et al. Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Frontiers in Microbiology, 2018, 9: 652, doi: org/10.3389/fmicb.2018.00652 [40] Huang Z, He CX, He ZQ, et al. The effects of arbuscular mycorrhizal fungi on reactive oxyradical scavenging system of tomato under salt tolerance. Agricultural Sciences in China, 2010, 9: 1150-1159 [41] Hashem A, Abd Allah EF, Alqarawi AA, et al. Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interactions, 2015, 10: 230-242 [42] Santander C, Ruiz A, Garcia S, et al. Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. Journal of the Science of Food and Agriculture, 2020, 100: 1577-1587 [43] Abeer H, Abd Allah EF, Alqarawi AA, et al. Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.) Walp.] by arbuscular mycorrhizal fungi. Legume Research-An International Journal, 2015, 38: 579-588 [44] Abeer H, Salwa AA, Alqarawi AA, et al. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pakistan Journal of Botany, 2016, 48: 37-45 [45] Abd Allah EF, Hashem A, Alqarawi AA, et al. Enhancing growth performance and systemic acquired resis-tance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 2015, 22: 274-283 [46] Abdelhameed RE, Metwally RA. Mitigation of salt stress by dual application of arbuscular mycorrhizal fungi and salicylic acid. Agrochimica, 2018, 62: 353-366 [47] Evelin H, Giri B, Kapoor R. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella Foenum-graecum. Mycorrhiza, 2013, 23: 71-86 [48] Estrada B, Aroca R, Barea JM, et al. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 2013, 201: 42-51 [49] Bharti A, Garg N. SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress. Ecotoxicology and Environmental Safety, 2019, 178: 66-78 [50] El-Esawi MA, Al-Ghamdi AA, Ali HM, et al. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environmental and Experimental Botany, 2019, 159: 55-65 [51] Haque SI, Matsubara Y. Salinity tolerance and sodium localization in mycorrhizal strawberry plants. Communications in Soil Science & Plant Analysis, 2018, 49: 2782-2792 [52] 贺忠群, 贺超兴, 闫妍, 等. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控. 园艺学报, 2011, 38(2): 273-280 [He Z-Q, He C-X, Yan Y, et al. Regulative effect of arbuscular mycorrhizal fungi on water absorption and expression of aquaporin genes in tomato under salt stress. Acta Horticulturae Sinica, 2011, 38(2): 273-280] [53] Ahmad H, Hayat S, Ali M, et al. The combination of arbuscular mycorrhizal fungi inoculation (Glomus versiforme) and 28-homobrassinolide spraying intervals imp-roves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (Cucumis sativus L.) under salinity. Ecology and Evolution, 2018, 8: 5724-5740 [54] 张皓, 崔杰, 李俊良, 等. 甜菜抗逆基因P5CS的克隆及盐胁迫下的表达分析. 中国糖料, 2019, 41(3): 1-6 [Zhang H, Cui J, Li J-L, et al. Cloning and expression pattern analysis of stress-tolerant gene P5CS under salt-stress in Beta vulgaris. Sugar Crops of China, 2019, 41(3): 1-6] |
| [1] | 周丹, 李海燕, 王秀军, 李庆卫. 外源褪黑素对盐胁迫下银杏幼苗渗透调节和抗氧化能力的影响 [J]. 应用生态学报, 2024, 35(2): 431-438. |
| [2] | 李菁, 张小飞, 张惠雯, 文嘉庆, 张焱, 徐玲玲. 盐胁迫对白及根际细菌群落组成及多样性的影响 [J]. 应用生态学报, 2024, 35(1): 219-228. |
| [3] | 郭丽娜, 卢霖, 董学瑞, 张凤路, 闫鹏, 董志强. 赤霉素、激动素和吲哚丁酸合剂对滨海盐碱区粒用高粱耐盐性和产量的影响 [J]. 应用生态学报, 2023, 34(9): 2405-2412. |
| [4] | 江尚焘, 栗晗, 彭海英, 梅新兰, 陈廷速, 徐阳春, 董彩霞, 沈其荣. 有机肥替代部分化肥对芒果丛枝菌根真菌群落的影响 [J]. 应用生态学报, 2023, 34(2): 481-490. |
| [5] | 史加勉, 宋鸽, 刘珊珊, 郑勇. 杉木林土壤丛枝菌根真菌形态特征及孢子相关细菌多样性对模拟氮沉降和干旱的响应 [J]. 应用生态学报, 2023, 34(12): 3291-3300. |
| [6] | 赵雷, 靳海笛, 曹晓云, 邓文辉, 杜灵娟. 六个东方铁筷子品种对干旱胁迫的生理响应及抗旱性评价 [J]. 应用生态学报, 2023, 34(10): 2644-2654. |
| [7] | 吴鹏, 吕剑, 郁继华, 刘娜, 李金武, 金莉, 金宁, 王舒亚. 褪黑素对盐碱复合胁迫下黄瓜幼苗光合特性和渗透调节物质含量的影响 [J]. 应用生态学报, 2022, 33(7): 1901-1910. |
| [8] | 宋鸽, 王全成, 郑勇, 贺纪正. 丛枝菌根真菌对大气CO2浓度升高和增温响应研究进展 [J]. 应用生态学报, 2022, 33(6): 1709-1718. |
| [9] | 李月灵, 金则新, 罗光宇, 陈超, 孙中帅, 王晓燕. 干旱胁迫下接种丛枝菌根真菌对七子花非结构性碳水化合物积累及C、N、P化学计量特征的影响 [J]. 应用生态学报, 2022, 33(4): 963-971. |
| [10] | 孙晓莉, 贾春燕, 田寿乐, 徐文燕, 王金平, 冉昆, 沈广宁. 外源甲基乙二醛对干旱胁迫下板栗幼苗的影响 [J]. 应用生态学报, 2022, 33(1): 104-110. |
| [11] | 王胜利, 宋正国, 王成伟, 刘禹, 高敏苓. 聚苯乙烯与邻苯二甲酸二丁酯共存对紫叶生菜的毒性效应 [J]. 应用生态学报, 2021, 32(9): 3335-3340. |
| [12] | 曹本福, 姜海霞, 刘丽, 陆引罡, 王茂胜. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展 [J]. 应用生态学报, 2021, 32(9): 3385-3396. |
| [13] | 刘云龙, 钱浩宇, 张鑫, 郑成岩, 邓艾兴, 江瑜, 张卫建. 丛枝菌根真菌对豆科作物生长和生物固氮及磷素吸收的影响 [J]. 应用生态学报, 2021, 32(5): 1761-1767. |
| [14] | 黄咏明, 蒋迎春, 王志静, 宋放, 何利刚, 田瑞, 吴黎明. 丛枝菌根真菌对植物根腐病的抑制效应及其机制 [J]. 应用生态学报, 2021, 32(5): 1890-1902. |
| [15] | 朱娟娟, 马海军, 张琇, 李敏, 徐小云, 覃洪云. 盐胁迫下解钾菌对枸杞幼苗的促生效应 [J]. 应用生态学报, 2021, 32(4): 1289-1297. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
辽公网安备21010302000574号
辽ICP备05000862号-2
版权所有 © 《应用生态学报》编辑部