[1] Jørgensen MS, Labouriau R, Olesen B. Seed size and burial depth influence Zostera marina L. (eelgrass) seed survival, seedling emergence and initial seedling biomass development. PLoS One, 2019, 14(4): e0215157 [2] Kennedy PG, Hausmann NJ, Wenk EH, et al. The importance of seed reserves for seedling performance: An integrated approach using morphological, physiological, and stable isotope techniques. Oecologia, 2004, 141: 547-554 [3] Pesendorfer MB, Sillett TS, Koenig WD, et al. Scatter-hoarding corvids as seed dispersers for oaks and pines: A review of a widely distributed mutualism and its utility to habitat restoration. The Condor, 2016, 118: 215-237 [4] Lebrija-Trejos E, Reich PB, Hernández A, et al. Species with greater seed mass are more tolerant of conspecific neighbours: A key driver of early survival and future abundances in a tropical forest. Ecology Letters, 2016, 19: 1071-1080 [5] 郝海坤, 黄志玲, 彭玉华, 等. 柚木种子大小变异及小苗生长特性. 种子, 2017, 36(1): 104-107 [Hao H-K, Huang Z-L, Peng Y-H, et al. Size variation and seedling growth characteristic of teak seed. Seed, 2017, 36(1): 104-107] [6] 梁建萍, 贾小云, 刘亚令, 等. 干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响. 生态学报, 2016, 36(14): 4415-4422 [Liang J-P, Jia X-Y, Liu Y-L, et al. Effects of drought stress on seedling growth and accumulation of secondary metabolites in the roots of Astragalus membranaceus var. mongholicus. Acta Ecologica Sinica, 2016, 36(14): 4415-4422] [7] 姚小兰, 周琳, 冯茂松, 等. 干旱胁迫对不同基质网袋桢楠幼苗生长及生物量的影响. 植物研究, 2018, 38(1): 81-90 [Yao X-L, Zhou L, Feng M-S, et al. Effcts of drought stress on the growth and biomass of Phoebe zhennan' seedling in different substrates net container. Bulletin of Botanical Research, 2018, 38(1): 81-90] [8] 邓秀秀, 施征, 肖文发, 等. 干旱和遮荫对马尾松幼苗生长和光合特性的影响. 生态学报, 2020, 40(8): 2735-2742 [Deng X-X, Shi Z, Xiao W-F, et al. Effects of drought and shading on growth and photosynthetic characteristics of Pinus massoniana seedlings. Acta Ecologica Sinica, 2020, 40(8): 2735-2742] [9] 张亚敏, 马克明, 李芳兰, 等. 干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究. 生态学报, 2016, 36(11): 3329-3337 [Zhang Y-M, Ma K-M, Li F-L, et al. Arbuscular mycorrhizal fungi (AMF) promotes Bauhinia faberi var. microphylla seedling growth under drought stress conditions. Acta Ecologica Sinica, 2016, 36(11): 3329-3337] [10] 牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响. 生态学报, 2017, 37(21): 7333-7341 [Niu S-Z, Song Q-F, Fan W-G, et al. Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plant. Acta Ecologica Sinica, 2017, 37(21): 7333-7341] [11] 陈春晓, 谢秀华, 王宇鹏, 等. 盐分和干旱对沙枣幼苗生理特性的影响. 生态学报, 2019, 39(12): 4540-4550 [Chen C-X, Xie X-H, Wang Y-P, et al. Effects of salt and drought on the physiological characteristics of Elaeagnus angustifolia L. seedlings. Acta Ecologica Sinica, 2019, 39(12): 4540-4550] [12] 吴玲, 李志辉, 吴际友, 等. 干旱胁迫对青冈栎种源叶绿素含量与抗氧化酶活性的影响. 中南林业科技大学学报, 2017, 37(6): 51-55 [Wu L, Li Z-H, Wu J-Y, et al. Response of drought stress on cholorophyll content and anti-oxydant enzyme of Cyclobalanopsis glauca provenance clone seedlings. Journal of Center South University of Forestry & Techology, 2017, 37(6): 51-55] [13] 刘长成, 刘玉国, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性. 植物生态学报, 2011, 35(10): 1070-1082 [Liu C-C, Liu Y-G, Guo K. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chinese Journal of Plant Eco-logy, 2011, 35(10): 1070-1082] [14] 丁龙, 赵慧敏, 曾文静, 等. 五种西北旱区植物对干旱胁迫的生理响应. 应用生态学报, 2017, 28(5): 1455-1463 [Ding L, Zhao H-M, Zeng W-J, et al. Physiological responses of five plants in northwest China arid area under drought stress. Chinese Journal of Applied Ecology, 2017, 28(5): 1455-1463] [15] 王卓敏, 郑欣颖, 薛立. 樟树幼苗对干旱胁迫和种植密度的生理响应. 生态学杂志, 2017, 36(6): 1495-1502 [Wang Z-M, Zheng X-Y, Xue L. Physiological responses of Cinnamomum camphora seedlings to drought stress and planting density. Chinese Journal of Ecology, 2017, 36(6): 1495-1502] [16] 何建社, 张利, 刘千里, 等. 岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应. 生态学报, 2018, 38(7): 2362-2371 [He J-S, Zhang L, Liu Q-L, et al. Physiologcal and biochemical response of typical shrubs to drought stress in the Minjiang River dry valley. Acta Ecologica Sinica, 2018, 38(7): 2362-2371] [17] Kusvuran S, Dasgan HY. Effects of drought stress on physiological and biochemical changes in Phaseolus vrlgaris L. Legume Research, 2017, 40: 55-62 [18] 范苏鲁, 苑兆和, 冯立娟, 等. 干旱胁迫对大丽花生理生化指标的影响. 应用生态学报, 2011, 22(3): 651-657 [Fan S-L, Yuan Z-H, Feng L-J, et al. Effects of drought stress on physiological and biochemical parameters of Dahlia pinnata. Chinese Journal of Applied Ecology, 2011, 22(3): 651-657] [19] 闫兴富, 王建礼, 周立彪. 光照对辽东栎种子萌发和幼苗生长的影响. 应用生态学报, 2011, 22(7): 1682-1688 [Yan X-F, Wang J-L, Zhou L-B. Effects of light intensity on Quercus liaotungensis seed germination and seedling growth. Chinese Journal of Applied Eco-logy, 2011, 22(7): 1682-1688] [20] 闫兴富, 仇智虎, 张嫱, 等. 种皮和播种深度对辽东栎种子萌发和幼苗早期生长的影响. 应用生态学报, 2013, 25(1): 53-60 [Yan X-F, Qiu Z-H, Zhang Q, et al. Effects of coat and sowing depth on seed germination and early seedling growth of Quercus wutaishanica. Chinese Journal of Applied Ecology, 2013, 25(1): 53-60] [21] 王娟婷, 王乃江, 党鹏, 等. 土壤掩埋对辽东栎幼苗出土和生长的影响. 干旱区研究, 2014, 31(4): 744-749 [Wang J-T, Wang N-J, Dang P, et al. Effects of soil-covering thickness on emergence rate and seedling growth of Quercus wutaishanica. Arid Zone Research, 2014, 31(4): 744-749] [22] 阎秀峰, 王琴. 两种外生菌根真菌在辽东栎幼苗上的混合接种效应. 植物生态学报, 2004, 28(1): 17-23 [Yan X-F, Wang Q. Effects of co-inoculation with two ectomycorrhizal fungi on Quercus liaotungensis seedlings. Chinese Journal of Plant Ecology, 2004, 28(1): 17-23] [23] 闫兴富, 周立彪, 张靠稳, 等. 不同密度下辽东栎幼苗子叶丢失及其对幼苗存活和生长的影响. 植物生态学报, 2012, 36(8): 831-840 [Yan X-F, Zhou L-B, Zhang K-W, et al. Cotyledon loss and its effects on survival and growth of Quercus wutaishanica seedlings under different densities. Chinese Journal of Plant Eco-logy, 2012, 36(8): 831-840] [24] 董丽佳, 桑卫国. 模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响. 植物生态学报, 2012, 36(8): 819-830 [Dong L-J, Sang W-G. Effects of simulated warming and precipitation change on seedling emergence and growth of Quercus mongolica in Dongling Mountain, Beijing, China. Chinese Journal of Plant Ecology, 2012, 36(8): 819-830] [25] 张金峰, 程继铭, 闫兴富, 等. 种子特征和播种深度对辽东栎种子萌发和幼苗生长的影响. 广西植物, 2020, 40(2): 226-236 [Zhang J-F, Cheng J-M, Yan X-F, et al. Effects of seed characteristics and sowing depth on seed germination and seedling growth of Quercus wutaishanica. Guihaia, 2020, 40(2): 226-236] [26] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000 [Li H-S. The Experimental Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000] [27] Osunkoya OO, Ash JE, Hopkins MS, et al. Influence of seed size and seedling ecological att ributes on shade-tolerance of rain-forest tree species in northern Queensland. Journal of Ecology, 1994, 82: 149-163 [28] Hall JS, Medjibe V, Berlyn GP, et al. Seedling growth of three coocurring Entand rophragma species (Melia-ceae) under simulated light environments: Impliations for forest management in central Africa. Forest Ecology and Management, 2003, 179: 135-144 [29] 何彦龙, 王满堂, 杜国祯. 不同光照处理下青藏高原克隆植物黄帚橐吾(Ligularia virgaurea)种子大小对其幼苗生长的影响. 生态学报, 2007, 27(8): 3091-3098 [He Y-L, Wang M-T, Du G-Z. Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai-Tibet Pla-teau. Acta Ecologica Sinica, 2007, 27(8): 3091-3098] [30] Yi XF, Wang ZY, Liu CQ, et al. Acorn cotyledons are larger than their seedlings' need: Evidence from artificial cutting experiments. Scientific Reports, 2015, 5: 8112 [31] Sun WH, Wu YY, Wen XY, et al. Different mechanisms of photosynthetic response to drought stress in tomato and violet orychophragmus. Phtotsynthetica, 2016, 54: 226-233 [32] 张珊珊, 康洪梅, 杨文忠, 等. 干旱胁迫下AMF对云南蓝果树幼苗生长和光合特征的影响. 生态学报, 2016, 36(21): 6850-6862 [Zhang S-S, Kang H-M, Yang W-Z, et al. Effects of arbuscular mycorrhizal fungi on growth and photosynthetic characteristics of Nyssa yunnanensis seedlings under drought stress. Acta Ecolo-gica Sinica, 2016, 36(21): 6850-6862] [33] 周珩, 郭世荣, 邵慧娟, 等. 等渗NaCl和Ca(NO3)2胁迫对黄瓜幼苗生长和生理特性的影响. 生态学报, 2014, 34(7): 1880-1890 [Zhou H, Guo S-R, Shao H-J, et al. Effects of iso-osmotic Ca(NO3)2 and NaCl stress on growth and physiological characteristics of cucumber seedlings. Acta Ecologica Sinica, 2014, 34(7): 1880-1890] [34] 罗杰, 周光良, 胡庭兴, 等. 干旱胁迫对润楠幼苗生长和生理生化指标的影响. 应用与环境生物学报, 2015, 21(3): 563-570 [Luo J, Zhou G-L, Hu T-X, et al. Effects of drought stress on growth and physiological parameters of Machilus pingii seedlings. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 563-570] [35] 赵丽英, 邓西平, 山仑. 活性氧清除系统对干旱胁迫的响应机制. 西北植物学报, 2005, 25(2): 413-418 [Zhao L-Y, Deng X-P, Shan L. The response mechanism of active oxygen species removing system to drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(2): 413-418] |