[1] Bögelein R, Hassdenteufel M, Thomas FM, et al. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech. Plant, Cell and Environment, 2012, 357: 1245-1257 [2] 黄甫昭, 李冬兴, 王斌, 等. 喀斯特季节性雨林植物叶片碳同位素组成及水分利用效率. 应用生态学报, 2019, 30(6): 1833-1839 [3] 郑鹏飞, 余新晓, 贾国栋, 等. 北京山区侧柏人工林水分利用效率及其影响因素. 应用生态学报, 2019, 30(3): 727-734 [4] Yu GR, Song X, Wang QF, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 2008, 177: 927-937 [5] Hu Z, Yu G, Fu Y, et al. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology, 2008, 14: 1609-1619 [6] 宋春林, 孙向阳, 王根绪. 森林生态系统碳水关系及其影响因子研究进展. 应用生态学报, 2015, 26(9): 2891-2902 [7] 刘宁, 孙鹏森, 刘世荣. 陆地水-碳耦合模拟研究进展. 应用生态学报, 2012, 23(11): 3187-3196 [8] Gulías J, Seddaiu G, Cifre J, et al. Leaf and plant water use efficiency in cocksfoot and tall fescue accessions under differing soil water availability. Crop Science, 2012, 52: 2321-2331 [9] Lu WW, Yu XX, Jia GD, et al. Responses of intrinsic water-use efficiency and tree growth to climate change in semi-arid areas of North China. Scientific Report, 2018, 8: 308 [10] 孙守家, 李春友, 何春霞, 等. 基于树轮稳定碳同位素的张北杨树防护林退化原因解析. 应用生态学报, 2017, 28(7): 2119-2127 [11] Escalona JM, Tomas M, Martorell S, et al. Carbon ba-lance in grapevines under different soil water supply: Importance of whole plant respiration. Australian Journal of Grape Wine Research, 2012, 183: 308-318 [12] Escalona JM, Fuentes S, Tomás M, et al. Responses of leaf night transpiration to drought stress in Vitis vinifera L. Agricultural Water Management, 2013, 118: 50-58 [13] Medrano H, Tomás M, Martorell S, et al. From leaf to whole-plant water use efficiency WUE in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 2015, 33: 220-228 [14] Hu J, Moore DJP, Riverosiregui DA, et al. Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios. New Phytologist, 2010, 1854: 1000-1015 [15] World Meteorological Organization. Greenhouse Gas Bu-lletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020[EB/OL]. (2021-10-25) [2022-02-28]. https://library.wmo.int/doc_num.php?explnum_id=10904 [16] Xu Z, Zhou G. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunch grass. BMC Plant Biology, 2011, 11: 21 [17] 高丽, 杨劼, 刘瑞香. 不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征. 生态学报, 2009, 29(11): 6025-6034 [18] 李勇, 彭少兵, 黄见良, 等. 叶肉导度的组成、大小及其对环境因素的响应. 植物生理学报, 2013, 49(11): 1143-1154 [19] Robredo A, Pérez-López U, Lacuesta M, et al. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biologia Plantarum, 2010, 54: 285-292 [20] Centritto M, Lucas ME, Jarvis PG. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Tree Physiology, 2002, 22: 699-706 [21] Ryan MG. Foliar maintenance respiration of sub-alpine and boreal trees and shrubs in relation to nitrogen content. Plant, Cell and Environment, 1995, 18: 765-772 [22] Hamilton JR, DeLucia EH, George K, et al. Forest carbon balance under elevated CO2. Oecologia, 2002, 131: 250-260 [23] 周玉梅, 韩士杰, 张海森, 等. 红松和长白松针叶暗呼吸对连续4个生长季高浓度CO2处理的响应. 中国科学D辑: 地球科学, 2006, 12: 1148-1153 [24] 黄桂荣, 梅旭荣, 严昌荣, 等. 干旱条件下冬小麦不同尺度水分利用效率及其之间的关系. 麦类作物学报, 2017, 37(4): 528-534 |