[1] |
周志豪, 王月, 闵雄, 等. 硫化氢信号与其它信号交互作用调控植物的耐旱性. 生物技术通报, 2017, 33(6): 1-9
|
[2] |
武燕奇, 郭素娟. 5个板栗品种(系)对持续干旱胁迫和复水的生理响应. 中南林业科技大学学报, 2017, 37(10): 67-74
|
[3] |
孙晓莉, 田寿乐, 沈广宁, 等. 干旱胁迫下H2S对板栗幼苗根系抗氧化特性及呼吸相关酶活性的影响. 核农学报, 2019, 33(5): 1024-1031
|
[4] |
高桂芹, 王猛, 费晓臣, 等. 迁西县板栗气象干旱指数保险产品设计. 现代农业科技, 2017(2): 183-185
|
[5] |
Hoque TS, Hossain MA, Mostofa MG, et al. Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance. Frontiers in Plant Science, 2016, 7: 1341, doi: 10.3389/fpls.2016.01341
|
[6] |
Rabbani N, Thornalley PJ. Glyoxalase in diabetes, obesity and related disorders. Seminars in Cell and Developmental Biology, 2011, 22: 309-317
|
[7] |
Yadav SK, Singla-pareek SL, Ray M, et al. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 2005, 337: 61-67
|
[8] |
Hoque MA, Uraji M, Torii A, et al. Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. Journal of Biochemical and Molecular Toxicology, 2012, 26: 315-321
|
[9] |
Li ZG, Long WB, Yang SZ, et al. Signaling molecule methylglyoxal-induced thermotolerance is partly mediated by hydrogen sulfide in maize (Zea mays L.) seedlings. Acta Physiologiae Plantarum, 2018, 40: 76, doi: 10.1007/s11738-018-2653-4
|
[10] |
Kaur C, Kushwaha HR, Mustafiz A, et al. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Frontiers in Plant Science, 2015, 6: 682, doi: 10.3389/fpls.2015.00682
|
[11] |
Kaur C, Sharma S, Singla-Pareek SL, et al. Methylglyoxal, triose phosphate isomerase, and glyoxalase pathway: Implications in abiotic stress and signaling in plants. Elucidation of Abiotic Stress Signaling in Plants, 2015, 2015: 347-366, doi: 10.1007/978-1-4939-2211-6_13
|
[12] |
闵雄, 周志豪, 李忠光. 信号分子硫化氢的代谢及其在植物耐热性形成中的作用. 植物生理学报, 2016, 52(1): 37-46
|
[13] |
Li ZG. Methylglyoxal and glyoxalase system in plants: Old players, new concepts. Botanical Review, 2016, 82: 183-203
|
[14] |
Bless Y, Ndlovu L, Gokul A, et al. Exogenous methylglyoxal alleviates zirconium toxicity in Brassica rapa L. seedling shoots. South African Journal of Botany, 2017, 109: 327, doi: 10.1016/j.sajb.2017.01.030
|
[15] |
Mostofa MG, Ghosh A, Li ZG, et al. Methylglyoxal: A signaling molecule in plant abiotic stress responses. Free Radical Biology and Medicine, 2018, 122: 96-109
|
[16] |
Hossain MA, Burritt DJ, Fujita M. Cross-stress tole-rance in plants: Molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxification systems. Abiotic Stress Response in Plants, 2016, 2016: 327-380, https://doi.org/10.1002/9783527694570.ch16
|
[17] |
Hossain MA, Fujita M. Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Bio-science, Biotechnology, and Biochemistry, 2009, 73: 2007-2013
|
[18] |
Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 2010, 16: 259-272
|
[19] |
Li ZG, Duan XQ, Min X, et al. Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. Protoplasma, 2017, 254: 1995-2006
|
[20] |
Wang Y, Ye XY, Qiu XM, et al. Methylglyoxal triggers the heat tolerance in maize seedlings by driving AsA-GSH cycle and reactive oxygen species-/methylglyoxal-scavenging system. Plant Physiology and Biochemistry, 2019, 138: 91-99
|
[21] |
张蜀秋, 李云, 武维华. 植物生理学实验技术教程. 北京: 科学出版社, 2011
|
[22] |
赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002
|
[23] |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003
|
[24] |
赵佳冰, 杜常健, 马长明, 等. 板栗“燕山早丰”幼苗光合与碳氮代谢对干旱胁迫的响应. 应用生态学报, 2020, 31(11): 3674-3680
|
[25] |
叶芯妤, 邱雪梅, 王月, 等. 乙二醛酶系统及其在植物响应和适应环境胁迫中的作用. 植物生理学报, 2019, 55(4): 401-410
|
[26] |
王月, 周志豪, 叶芯妤, 等. 甲基乙二醛: 植物中一种新的信号分子. 植物生理学报, 2018, 54(1): 10-18
|
[27] |
Hasanuzzaman M, Nahar K, Anee TI, et al. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 2017, 23: 249-268
|
[28] |
Askari-Khorasgani O, Pessarakli M. Manipulation of plant methylglyoxal metabolic and signaling pathways for improving tolerance to drought stress. Journal of Plant Nutrition, 2019, 42: 1268-1275
|
[29] |
Nathan C, Ding A. SnapShot: Reactive oxygen intermediates (ROI). Cell, 2010, 140: 951, doi: 10.1016/j.cell.2010.03.008
|
[30] |
Iqbal N, Khan N. Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. New York: Springer, 2016
|
[31] |
王国骄, 唐亮, 范淑秀, 等. 抗氧化机制在作物对非生物胁迫耐性中的作用. 沈阳农业大学学报, 2012, 43(6): 719-724
|
[32] |
Kornyeyev D, Logan BA, Payton P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologia Plantarum, 2001, 113: 323-331
|
[33] |
李玲, 李俊, 张春雷, 等. 外源ABA和BR在提高油菜幼苗耐渍性中的作用. 中国油料作物学报, 2012, 34(5): 489-495
|
[34] |
安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略. 应用生态学报, 2012, 23(10): 2907-2915
|
[35] |
Bhuiyan TF, Ahamed KU, Nahar K, et al. Mitigation of PEG-induced drought stress in rapeseed (Brassica rapa L.) by exogenous application of osmolytes. Biocatalysis and Agricultural Biotechnology, 2019, 20: 101197, doi: 10.1016/j.bcab.2019.101197
|
[36] |
Zhu JK. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324
|
[37] |
Mahmood Q, Ahmad R, Kwak SS, et al. Ascorbate and glutathione: Protectors of plants in oxidative stress// Anjum N, Chan MT, Umar S, eds. Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht, Germany: Springer, 2010: 209-229, doi: 10.1007/978-90-481-9404-9_7
|
[38] |
Mano J. Reactive carbonyl species: Their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiology and Biochemistry, 2012, 59: 90-97
|