[1] Pringle C. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, 2003, 17: 2685-2689 [2] McLaughlin DL, Diamond JS, Quintero C, et al. Wetland connectivity thresholds and flow dynamics from stage measurements. Water Resources Research, 2019, 55: 6018-6032 [3] Saco PM, Rodríguez JF, Moreno-de las Heras M, et al. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena, 2020, 186: 104354 [4] 夏军, 高扬, 左其亭, 等. 河湖水系连通特征及其利弊. 地理科学进展, 2012, 31(1): 26-31 [Xia J, Gao Y, Zuo Q-T, et al. Characteristics of interconnected rivers system and its ecological effects on water environment. Progress in Geography, 2012, 31(1): 26-31] [5] 崔保山, 蔡燕子, 谢湉, 等. 湿地水文连通的生态效应研究进展及发展趋势. 北京师范大学学报: 自然科学版, 2016, 52(6): 738-746 [Cui B-S, Cai Y-Z, Xie T, et al. Ecological effects of wetland hydrological connectivity: Problems and prospects. Journal of Beijing Normal University: Natural Science, 2016, 52(6): 738-746] [6] 左其亭, 崔国韬. 河湖水系连通理论体系框架研究. 水电能源科学, 2012, 30(1): 1-5 [Zuo Q-T, Cui G-T. Study on theoretical system and framework of Interconnected River System Network. Water Resources and Power, 2012, 30(1): 1-5] [7] 李原园, 李宗礼, 黄火键, 等. 河湖水系连通演变过程及驱动因子分析. 资源科学, 2014, 36(6): 1152-1157 [Li Y-Y, Li Z-L, Huang H-J, et al. Analyzing the evolution of the interconnected river system network and driving factors. Resources Science, 2014, 36(6): 1152-1157] [8] 窦明, 靳梦, 张彦, 等. 基于城市水功能需求的水系连通指标阈值研究. 水利学报, 2015, 46(9): 1089-1096 [Dou M, Jin M, Zhang Y, et al. Research on the threshold of interconnected river system network's indexes based on demand of the city's water function. Journal of Hydraulic Engineering, 2015, 46(9): 1089-1096] [9] 章光新, 武瑶, 吴燕锋, 等. 湿地生态水文学研究综述. 水科学进展, 2018, 29(5): 737-749 [Zhang G-X, Wu Y, Wu Y-F, et al. A review of research on wetland ecohydrology. Advances in Water Science, 2018, 29(5): 737-749] [10] 孟祥永, 陈星, 陈栋一, 等. 城市水系连通性评价体系研究. 河海大学学报: 自然科学版, 2014, 42(1): 24-28 [Meng X-Y, Chen X, Chen D-Y, et al. Evaluation system of urban water system connectivity. Journal of Hohai University: Natural Sciences, 2014, 42(1): 24-28] [11] Pekel JF, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes. Nature, 2016, 540: 418-422 [12] Lutz AF, Immerzeel WW, Shrestha AB, et al. Consis-tent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 2014, 4: 587-592 [13] Micklin P. The future Aral Sea: Hope and despair. Environmental Earth Sciences, 2016, 75: 844 [14] van Dijk AIJM, Beck HE, Crosbie RS, et al. The millennium drought in southeast Australia (2001-2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research, 2013, 49: 1040-1057 [15] MacDonald GM. Water, climate change, and sustaina-bility in the southwest. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 21256-21262 [16] 陈月庆, 武黎黎, 章光新, 等. 湿地水文连通研究综述. 南水北调与水利科技, 2019, 17(1): 26-38 [Chen Y-Q, Wu L-L, Zhang G-X, et al. Review of wetland hydrological connectivity. South-to-North Water Transfers and Water Science & Technology, 2019, 17(1): 26-38] [17] Poff NL, Allan JD, Bain MB, et al. The natural flow regime. Bioscience, 1997, 47: 769-784 [18] Cote D, Dan GK, Bourne C, et al. A new measure of longitudinal connectivity for stream networks. Landscape Ecology, 2009, 24: 101-113 [19] Deng X, Xu Y, Han L, et al. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. Journal of Hydrology, 2018, 566: 846-859 [20] Larsen LG, Choi J, Nungesser MK, et al. Directional connectivity in hydrology and ecology. Ecological Applications, 2012, 22: 2204-2220 [21] Leibowitz SG, Wigington PJ, Schofield KA, et al. Connectivity of streams and wetlands to downstream waters: An integrated systems framework. Journal of the American Water Resources Association, 2018, 54: 298-322 [22] Kemp P, O'hanley J. Procedures for evaluating and prio-ritising the removal of fish passage barriers: Synthesis. Fisheries Management and Ecology, 2010, 17: 297-322 [23] 赵进勇, 董哲仁, 翟正丽, 等. 基于图论的河道-滩区系统连通性评价方法. 水利学报, 2011, 42(5): 537-543 [Zhao J-Y, Dong Z-R, Zhai Z-L, et al. Eva-luation method for river floodplain system connectivity based on graph theory. Journal of Hydraulic Enginee-ring, 2011, 42(5): 537-543] [24] 崔广柏, 陈星, 向龙, 等. 平原河网区水系连通改善水环境效果评估. 水利学报, 2017, 48(12): 1429-1437 [Cui G-B, Chen X, Xiang L, et al. Evaluation of water environment improvement by interconnected river network in plain area. Journal of Hydraulic Engineering, 2017, 48(12): 1429-1437] [25] 王延贵, 陈吟, 陈康. 水系连通性的指标体系及其应用. 水利学报, 2020, 51(Suppl.): 1-10 [Wang Y-G, Chen Y, Chen K. Index system of water system connectivity and its application. Journal of Hydraulic Enginee-ring, 2020, 51(Suppl.): 1-10] [26] 陈月庆, 武黎黎, 章光新, 等. 干涉合成孔径雷达监测湿地水位研究综述. 应用生态学报, 2020, 31(8): 2841-2848 [Chen Y-Q, Wu L-L, Zhang G-X, et al. Review on wetland water level monitoring using interferometric synthetic aperture radar. Chinese Journal of Applied Ecology, 2020, 31(8): 2841-2848] [27] Chen Y, Qiao S, Zhang G, et al. Investigating the potential use of Sentinel-1 data for monitoring wetland water level changes in China's Momoge National Nature Reserve. PeerJ, 2020, 8: e8616 [28] Trigg MA, Michaelides K, Neal JC, et al. Surface water connectivity dynamics of a large scale extreme flood. Journal of Hydrology, 2013, 505: 138-149 [29] Tan Z, Wang X, Chen B, et al. Surface water connectivity of seasonal isolated lakes in a dynamic lake-floodplain system. Journal of Hydrology, 2019, 579: 124154 [30] Liu X, Zhang Q, Li Y, et al. Satellite image-based investigation of the seasonal variations in the hydrological connectivity of a large floodplain (Poyang Lake, China). Journal of Hydrology, 2020, 585: 124810 [31] Li Y, Zhang Q, Liu X, et al. The role of a seasonal lake groups in the complex Poyang Lake-floodplain system (China): Insights into hydrological behaviors. Journal of Hydrology, 2019, 578: 124055 [32] The Secretariat of the Convention on Wetlands. The List of Wetlands of International Importance [EB/OL]. (2020-09-16) [2020-10-02]. https://www.ramsar.org/sites/default/files/documents/library/sitelist.pdf [33] Jiang H, He C, Luo W, et al. Hydrological restoration and water resource management of siberian crane (Grus leucogeranus) stopover wetlands. Water, 2018, 10(12): 1714 [34] 刘垚燚, 田恬, 曾鹏, 等. 基于Google Earth Engine平台的1984—2018年太湖水域变化特征. 应用生态学报, 2020, 31(9): 3163-3172 [Liu Y-Y, Tian T, Zeng P, et al. Surface water change characteristics of Taihu Lake from 1984-2018 based on Google Earth Engine. Chinese Journal of Applied Ecology, 2020, 31(9): 3163-3172] [35] 崔桢. 基于白鹤生境需求的湿地生态水文调控研究. 硕士论文. 长春: 中国科学院东北地理与农业生态研究所, 2017 [Cui Z. Eco-hydrological Regulations Based on Habitat Requirements of Grus leucogeranus: A Case Study in Baihe Lake, Momoge National Natural Wetland Reserve, Northeast China. Master Thesis. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2017] [36] 吴燕锋, 章光新. 湿地生态水文模型研究综述. 生态学报, 2018, 38(7): 2588-2598 [Wu Y-F, Zhang G-X. Review of development, frontiers and prospects of wetlands eco-hydrological models. Acta Ecologica Sinica, 2018, 38(7): 2588-2598] |