[1] |
安志刚, 郭凤霞, 陈垣, 等. 连作自毒物质与根际微生物互作研究进展. 土壤通报, 2018, 49(3): 750-756
|
[2] |
陈玲, 董坤, 杨智仙, 等. 连作障碍中化感自毒效应及间作缓解机理. 中国农学通报, 2017, 33(8): 91-98
|
[3] |
Yan Z, He X, Guo K, et al. Allelochemicals from the rhizosphere of Lanzhou lily: Discovery of the autotoxic compounds of a bulb crop. Scientia Horticulturae, 2019, 250: 121-126
|
[4] |
Kato-Noguchi H, Nakamura K, Ohno O, et al. Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Journal of Plant Physiology, 2017, 213: 23-29
|
[5] |
Ren X, Yan Z, He X, et al. Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis Fisch: Discovery of the autotoxic compounds of a traditional herbal medicine. Industrial Crops and Products, 2017, 97: 302-307
|
[6] |
Xiao W, Wang Z, Wu F, et al. Effects of soil improvement technology on soil quality in solar greenhouse. Environmental Science and Pollution Research, 2018, 25: 24093-24100
|
[7] |
喻景权, 杜尧舜. 蔬菜设施栽培可持续发展中的连作障碍问题. 沈阳农业大学学报, 2000, 31(2): 124-126
|
[8] |
李庆凯, 郭峰, 唐朝辉, 等. 三种酚酸类物质在花生连作障碍中的生态效应分析. 中国油料作物学报, 2019, 41(1): 53-63
|
[9] |
Lu XF, Zhang H, Lyu SS, et al. Effects of exogenous phenolic acids on photosystem functions and photosynthetic electron transport rate in strawberry leaves. Photosynthetica, 2018, 56: 616-622
|
[10] |
Zheng F, Chen L, Gao J, et al. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system. Journal of Plant Physiology, 2018, 230: 33-39
|
[11] |
张淑香, 高子勤. 连作障碍与根际微生态研究Ⅱ. 根系分泌物与酚酸物质. 应用生态学报, 2000, 11(1): 152-156
|
[12] |
Zhang B, Li X, Wang F, et al. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle'. Plant and Soil, 2016, 407: 307-322
|
[13] |
Wu H, Xu J, Wang J, et al. Insights into the mechanism of proliferation on the special microbes mediated by phenolic acids in the Radix pseudostellariae rhizosphere under continuous monoculture regimes. Frontiers in Plant Science, 2017, 8: 659, doi: 10.3389/fpls.2017.00659
|
[14] |
Chen P, Wang Y, Liu Q, et al. Phase changes of continuous cropping obstacles in strawberry (Fragaria × ananassa Duch.) production. Applied Soil Ecology, 2020, 155: 103626, doi: 10.1016/j.apsoil.2020.103626
|
[15] |
Dong LL, Xu J, Li Y, et al. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biology and Biochemistry, 2018, 125: 64-74
|
[16] |
Chishaki N, Horiguchi T. Responses of secondary metabolism in plants to nutrient deficiency. Soil Science and Plant Nutrition, 1997, 43: 987-991
|
[17] |
Zhu S, Vivanco JM, Manter DK. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 2016, 107: 324-333
|
[18] |
刘瑜, 梁永超, 褚贵新, 等. 长期棉花连作对北疆棉区土壤生物活性与酶学性状的影响. 生态环境学报, 2010, 19(7): 1586-1592
|
[19] |
宋旭红, 谭均, 潘媛, 等. 连作对玄参产量和根际土壤肥力及酶活性的影响. 中药材, 2017, 40(6): 1243-1248
|
[20] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000
|
[21] |
关松荫. 土壤酶及其研究法. 北京: 中国农业出版社, 1986
|
[22] |
Zhang C, Liu G, Xue S, et al. Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma, 2011, 161: 115-125
|
[23] |
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707
|
[24] |
Boyrahmadi M, Raiesi F. Plant roots and species moderate the salinity effect on microbial respiration, biomass, and enzyme activities in a sandy clay soil. Biology and Fertility of Soils, 2018, 54: 509-521
|
[25] |
Li J, Shang GZ, Deng L. Dynamics of soil microbial metabolic activity during grassland succession after farmland abandonment. Geoderma, 2020, 363: 114-167
|
[26] |
Chen D, Li J, Lan Z, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 2015, 30: 658-669
|
[27] |
Bhople P, Djukic I, Keiblinger K, et al. Variations in soil and microbial biomass C, N and fungal biomass ergosterol along elevation and depth gradients in alpine ecosystems. Geoderma, 2019, 345: 93-103
|
[28] |
Dai J, Liu S, Zhang W, et al. Quantifying the effects of nitrogen on fruit growth and yield of cucumber crop in greenhouses. Scientia Horticulturae, 2011, 130: 551-561
|
[29] |
徐刚, 彭天沁, 高文瑞, 等. 不同基质含水量和钾肥施用量对黄瓜生长及光合作用的影响. 江苏农业学报, 2014, 30(5): 1109-1114
|
[30] |
马云华, 魏珉, 王秀峰. 日光温室连作黄瓜根区微生物区系及酶活性的变化. 应用生态学报, 2004, 15(6): 1005-1008
|
[31] |
Bai Y, Wang G, Cheng Y, et al. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports, 2019, 9: 12499, doi: 10.1038/s41598-019-48611-5
|
[32] |
Wang Z, Yang S, Wang R, et al. Compositional and functional responses of soil microbial communities to long-term nitrogen and phosphorus addition in a calcareous grassland. Pedobiologia, 2020, 78: 150612, doi: 10.1016/j.pedobi.2019.150612
|
[33] |
Sun J, Zou L, Li W, et al. Soil microbial and chemical properties influenced by continuous cropping of banana. Scientia Agricola, 2018, 75: 420-425
|
[34] |
Wu H, Xu J, Wang J, et al. Insights into the mechanism of proliferation on the special microbes mediated by phenolic acids in the Radix pseudostellariae rhizosphere under continuous monoculture regimes. Frontiers in Plant Science, 2017, 8: 659, doi: 10.3389/fpls.2017.00659
|
[35] |
Huo L, Pang H, Zhao Y, et al. Buried straw layer plus plastic mulching improves soil organic carbon fractions in an arid saline soil from northwest China. Soil and Tillage Research, 2017, 165: 286-293
|
[36] |
陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013, 46(5): 950-960
|
[37] |
Geisseler D, Linquist BA, Lazicki PA. Effect of fertilization on soil microorganisms in paddy rice systems: A meta-analysis. Soil Biology and Biochemistry, 2017, 115: 452-460
|