[1] 查美琴, 徐海东, 成向荣, 等. 不同林龄杉木+闽楠复层林土壤磷形态及微生物功能多样性变化. 生态学报, 2020, 40(19): 6938-6947 [2] Bergkemper F, Kublik S, Lang F, et al. Novel oligonucleotide primers reveals a high diversity of microbes which drive phosphorus turnover in soil. Journal of Microbiological Methods, 2016, 125: 91-97 [3] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展. 中国土壤与肥料, 2011(2): 1-9 [4] Richardson AE, Lynch JP, Ryan PR, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349: 121-156 [5] Zhang XY, Yang Y, Zhang C, et al. Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils. Functional Ecology, 2018, 32: 106-116 [6] Neal AL, Rossmann M, Brearley C, et al. Land use influences phosphatase gene micro-diversity in soils. Environmental Microbiology, 2017, 19: 2740-2753 [7] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79: 7-31 [8] Alagöz Z, Yilmaz E. Effects of different sources of organic matter on soil aggregate formation and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey. Soil and Tillage Research, 2009, 103: 419-424 [9] 宋莉群, 王义东, 李冬初, 等. 长期退耕对红壤团聚体碳氮磷生态化学计量特征的影响. 生态学杂志, 2019, 38(6): 1707-1715 [10] Cui H, Ou Y, Wang L, et al. Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands. Chemosphere, 2019, 223: 319-329 [11] Li R, Zhang S, Zhang M, et al. Phosphorus fractions and adsorption-desorption in aggregates in coastal saline-alkaline paddy soil with organic fertilizer application. Journal of Soils and Sediments, 2021, 21: 3084-3097 [12] Jiang X, Bol R, Willbold S, et al. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil. Biogeosciences, 2015, 12: 6443-6452 [13] 吴雯, 郑子成, 李廷轩, 等. 退耕植茶地土壤团聚体及其无机磷组分分布特征. 应用生态学报, 2016, 27(10): 3264-3272 [14] 王晟强, 郑子成, 李廷轩. 植茶年限对土壤团聚体氮、磷、钾含量变化的影响. 植物营养与肥料学报, 2013, 19(6): 1393-1402 [15] 李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16 [16] 吴鹏飞. 高效利用杉木无性系适应环境磷胁迫的机制研究. 博士论文. 福州: 福建农林大学, 2009 [17] 黄永珍, 王晟强, 叶绍明. 杉木林分类型对表层土壤团聚体有机碳及养分变化的影响. 应用生态学报, 2020, 31(9): 2857-2865 [18] 王金悦, 邓羽松, 林立文, 等. 南亚热带5种典型人工林凋落物水文效应. 水土保持学报, 2020, 34(5): 169-175 [19] Bach EM, Hofmockel KS. Soil aggregate isolation me-thod affects measures of intra-aggregate extracellular enzyme activity. Soil Biology and Biochemistry, 2014, 69: 54-62 [20] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [21] 彭新华, 张斌, 赵其国. 红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响. 生态学报, 2003, 23(10): 2176-2183 [22] Eynard A, Schumacher TE, Lindstrom MJ, et al. Effects of agricultural management systems on soil organic carbon in aggregates of Ustolls and Usterts. Soil and Tillage Research, 2005, 81: 253-263 [23] Yang H, Long J, Li ZJ, et al. Effects of land use types on phosphorus forms and their contents in soil aggregates in watershed of Hongfeng Lake. Journal of Agro-Environment Science, 2013, 32: 2214-2220 [24] 贾兴永, 李菊梅. 土壤磷有效性及其与土壤性质关系的研究. 中国土壤与肥料, 2011(6): 76-82 [25] 曹娟, 闫文德, 项文化, 等. 湖南会同不同年龄杉木人工林土壤磷素特征. 生态学报, 2014, 34(22): 6519-6527 [26] Zou CM, Li Y, Huang W, et al. Rotation and manure amendment increase soil macro-aggregates and associa-ted carbon and nitrogen stocks in flue-cured tobacco production. Geoderma, 2018, 325: 49-58 [27] Wiesmeier M, Steffens M, Mueller CW, et al. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. European Journal of Soil Science, 2012, 63: 22-31 [28] 张芸, 李惠通, 魏志超, 等. 不同发育阶段杉木人工林土壤有机质特征及团聚体稳定性. 生态学杂志, 2016, 35(8): 2029-2037 [29] Chen GS, Yang ZJ, Gao R, et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. Forest Ecology and Management, 2013, 300: 68-76 [30] 刘宝, 吴文峰, 何盛强, 等. 不同林龄闽楠林土壤呼吸与碳储量研究. 森林与环境学报, 2018, 38(4): 49-56 [31] 曹小玉, 李际平. 不同龄组杉木人工林土壤有机碳贮量及分布特征. 中南林业科技大学学报: 自然科学版, 2014, 34(7): 104-107 [32] 黎宏祥, 王彬, 王玉杰, 等. 不同林分类型对土壤团聚体稳定性及有机碳特征的影响. 北京林业大学学报, 2016, 38(5): 84-97 [33] Wang S, Li T, Zheng Z, et al. Soil organic carbon and nutrients associated with aggregate fractions in a chronosequence of tea plantations. Ecological Indicators, 2019, 101: 444-452 [34] 王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 2018, 38(11): 3848-3858 [35] 王艳玲, 章永辉, 何园球. 红壤基质组分对磷吸持指数的影响. 土壤学报, 2012, 49(3): 552-559 [36] 王心怡, 周聪, 冯文瀚, 等. 不同林龄杉木人工林土壤团聚体及其有机碳变化特征. 水土保持学报, 2019, 33(5): 126-131 [37] 王蕾, 王艳玲, 李欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析. 中国土壤与肥料, 2021(1): 17-25 [38] 王艳玲, 蒋发辉, 徐江兵, 等. 长期配施有机肥对旱地红壤微团聚体中有机碳含量的影响. 土壤通报, 2018, 49(2): 377-384 [39] 中国土壤普查办公室. 中国土壤. 北京: 农业出版社, 1992 [40] 张倩, 韩贵琳, 柳满, 等. 贵州普定喀斯特关键带土壤磷分布特征及其控制因素. 生态学杂志, 2019, 38(2): 321-328 |