[1] Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326: 123-125 [2] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 1996, 60: 609-640 [3] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16: 263-276 [4] Wei W, Isobe K, Nishizawa T, et al. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. The ISME Journal, 2015, 9: 1954-1965 [5] Amezketa E. Soil aggregate stability: A review. Journal of Sustainable Agriculture, 1999, 14: 83-151 [6] Sexstone AJ, Parkin TB, Tiedje JM. Denitrification response to soil wetting in aggregated and unaggregated soil. Soil Biology and Biochemistry, 1988, 20: 767-769 [7] Sey BK, Manceur AM, Whalen JK, et al. Small-scale heterogeneity in carbon dioxide, nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil. Soil Biology and Biochemistry, 2008, 40: 2468-2473 [8] Bandyopadhyay KK, Lal R. Effect of land use management on greenhouse gas emissions from water stable aggregates. Geoderma, 2014, 232: 363-372 [9] Khalil K, Renault P, Mary B. Effects of transient anaerobic conditions in the presence of acetylene on subsequent aerobic respiration and N2O emission by soil aggregates. Soil Biology and Biochemistry, 2005, 37: 1333-1342 [10] Morales SE, Cosart T, Holben WE. Bacterial gene abundances as indicators of greenhouse gas emission in soils. The ISME Journal, 2010, 4: 799-808 [11] Li PP, Zhang SQ, Li F, et al. Long term combined fertilization and soil aggregate size on the denitrification and community of denitrifiers. Applied Soil Ecology, 2020, 156: 103718 [12] Blaud A, van der Zaan B, Menon M, et al. The abundance of nitrogen cycle genes and potential greenhouse gas fluxes depends on land use type and little on soil aggregate size. Applied Soil Ecology, 2018, 125: 1-11 [13] Bouwman AF, van der Hoek KW, Olivier JGJ. Uncertainties in the global source distribution of nitrous oxide. Journal of Geophysical Research: Atmospheres, 1995, 100: 2785-2800 [14] Luo X, Hou E, Chen J, et al. Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China. Catena, 2020, 193: 104606 [15] Konda R, Ohta S, Ishizuka S, et al. Spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biology and Biochemistry, 2008, 40: 3021-3030 [16] Tang W, Chen D, Phillips OL, et al. Effects of long-term increased N deposition on tropical montane forest soil N2 and N2O emissions. Soil Biology and Biochemistry, 2018, 126: 194-203 [17] Elliott ET. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50: 627-633 [18] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [19] 宛颂, 段春健, 樊剑波, 等. 旱地红壤反硝化功能基因丰度对长期施肥的响应. 应用生态学报, 2020, 31(11): 3729-3736 [20] 王小红, 杨智杰, 刘小飞. 等. 天然林转换成人工林对土壤团聚体稳定性及有机碳分布的影响. 水土保持学报, 2014, 28(6): 177-182 [21] 张楠, 杨智杰, 胥超, 等. 中亚热带森林转换对凋落物养分归还及养分利用效率的影响. 应用生态学报, 2022, 33(2): 321-328 [22] 宋庆妮, 杨清培, 余定坤, 等. 赣中亚热带森林转换对土壤氮素矿化及有效性的影响. 生态学报, 2013, 33(22): 7309-7318 [23] 吴鹏, 王襄平, 张新平, 等. 东北地区森林凋落叶分解速率与气候、林型、林分光照的关系. 生态学报, 2016, 36(8): 2223-2232 [24] Breulmann M, Schulz E, Weißhuhn K, et al. Impact of the plant community composition on labile soil organic carbon, soil microbial activity and community structure in semi-natural grassland ecosystems of different productivity. Plant and Soil, 2012, 352: 253-265 [25] Allen K, Corre MD, Tjoa A, et al. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS One, 2015, 10(7): e0133325 [26] 纪娇娇, 郑蔚, 杨智杰, 等. 亚热带森林转换对土壤微生物呼吸及其熵值的影响. 生态学报, 2020, 40(3): 800-807 [27] Hu B, Yang B, Pang X, et al. Responses of soil phosphorus fractions to gap size in a reforested spruce forest. Geoderma, 2016, 279: 61-69 [28] Lehmann A, Zheng W, Rillig MC. Soil biota contributions to soil aggregation. Nature Ecology & Evolution, 2017, 1: 1828-1835 [29] 李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究. 生态环境学报, 2013, 22(9): 1625-1632 [30] Guggenberger G, Elliott ET, Frey SD, et al. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch. Soil Biology and Biochemistry, 1999, 31: 407-419 [31] 陈山, 杨峰, 林杉, 等. 土地利用方式对红壤团聚体稳定性的影响. 水土保持学报, 2012, 26(5): 211-216 [32] Bárta J, Melichová T, Vaněk D, et al. Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil. Biogeochemistry, 2010, 101: 123-132 [33] Shein EV. Course of Soil Physics. Moscow: Moscow State University Publishing, 2005 [34] 李文娟, 蔡延江, 朱同彬, 等. 土壤团聚体氧化亚氮排放及其微生物学机制研究进展. 土壤学报, 2021, 58(5): 1132-1144 [35] Neumann D, Heuer A, Hemkemeyer M, et al. Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiology Eco-logy, 2013, 86: 71-84 |