[1] Magnussen S, Nord-Larsen T, Riis-Nielsen T. Lidar supported estimators of wood volume and aboveground biomass from the Danish national forest inventory (2012-2016). Remote Sensing of Environment, 2018, 211: 146-153 [2] 马婷, 李崇贵, 郭瑞霞, 等. 运用植被指数时序特征对落叶松人工林分类. 东北林业大学学报, 2020, 48(3): 56-59 [3] Betbeder J, Rapinel S, Corgne S, et al. TerraSAR-X dual-pol time-series for mapping of wetland vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 107: 90-98 [4] 温仲明, 焦峰, 焦菊英. 黄土丘陵区延河流域潜在植被分布预测与制图. 应用生态学报, 2008, 19(9): 1897-1904 [5] Zhu Y, Feng Z, Lu J, et al. Estimation of forest biomass in Beijing (China) using multisource remote sen-sing and forest inventory data. Forests, 2020, 11: 163 [6] 张沁雨, 王海宾, 彭道黎, 等. 基于基准样地法和国产高分数据的湖南省森林植被碳储量估测. 应用生态学报, 2019, 30(10): 3385-3394 [7] 贾明明, 任春颖, 刘殿伟, 等. 基于环境星与MODIS时序数据的面向对象森林植被分类. 生态学报, 2014, 34(24): 7167-7174 [8] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 2010, 114: 2610-2623 [9] 高书鹏, 史正涛, 刘晓龙, 等. 基于高时空分辨率可见光遥感数据的热带山地橡胶林识别. 遥感技术与应用, 2018, 33(6): 1122-1131 [10] Dong T, Liu J, Qian BD, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. International Journal of Applied Earth Observation and Geoinformation, 2016, 49: 63-74 [11] Hu RM, Wang S, Guo J, et al. Vegetation coverage and impervious surface area estimated based on the ESTRAFM model and remote sensing monitoring. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018, 4: 113-119 [12] Deng ZW, Zhu X, He QY, et al. Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area. Advances in Space Research, 2019, 63: 2144-2154 [13] Wu MQ, Huang WJ, Niu Z, et al. Combining HJ CCD, GF-1 WFV and MODIS data to generate daily high spatial resolution synthetic data for environmental process monitoring. International Journal of Environmental Research and Public Health, 2015, 12: 9920-9937 [14] 王建勋, 华丽, 邓世超, 等. 基于GF_1与MODIS时空融合的南方丘陵区水稻提取研究. 中国农业资源与区划, 2019, 40(5): 37-46 [15] Fisher JRB, Acosta EA, Dennedy-Frank PJ, et al. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing in Ecology and Conservation, 2018, 4: 137-149 [16] Yang XM, Yang TB, Ji Q, et al. Regional-scale grassland classification using moderate-resolution imaging spectrometer datasets based on multistep unsupervised classification and indices suitability analysis. Journal of Applied Remote Sensing, 2014, 8: 083548 [17] 张秀敏, 盛煜, 南卓铜, 等. 基于决策树方法的青藏高原温泉区域高寒草地植被分类研究. 草业科学, 2011, 28(12): 2074-2083 [18] 国家林业局. 国家森林资源连续清查技术规定(2014). 北京: 国家林业局, 2014 [19] 江西省森林资源与环境监测中心. 江西省森林资源二类调查技术规程(第七次调查). 南昌: 江西省森林资源与环境监测中心, 2019 [20] Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964, 36: 1627-1639 [21] 宋春桥, 柯灵红, 游松财, 等. 基于TIMESAT的3种时序NDVI拟合方法比较研究——以藏北草地为例. 遥感技术与应用, 2011, 26(2): 147-155 [22] 夏传福, 李静, 柳钦火. 植被物候遥感监测研究进展. 遥感学报, 2013, 17(1): 1-16 [23] 柳文杰, 曾永年, 张猛. 融合时间序列环境卫星数据与物候特征的水稻种植区提取. 遥感学报, 2018, 22(3): 381-391 [24] Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40: 1824-1832 [25] 赵亚杰, 黄进良, 王立辉, 等. 基于时空融合NDVI及物候特征的江汉平原水稻种植区提取研究. 长江流域资源与环境, 2020, 29(2): 424-433 [26] 赵琳琳, 张锐, 刘焱序, 等. GF1-WFV与Landsat8-OLI对植被信息的提取差异研究. 生态学报, 2020, 40(10): 3495-3506 [27] 徐磊, 巫兆聪, 罗飞, 等. 基于GF-1/WFV与MODIS时空融合的森林覆盖定量提取. 农业机械学报, 2017, 48(7): 145-152 [28] 毕恺艺, 牛铮, 黄妮, 等. 基于Sentinel-2A时序数据和面向对象决策树方法的植被识别. 地理与地理信息科学, 2017, 33(5): 16-20 [29] Wu ZJ, Zhang JH, Deng F, et al. Fusion of GF and MODIS data for regional-scale grassland community classification with EVI2 time-series and phenological features. Remote Sensing, 2021, 13: 835 [30] Matsushita B, Yang W, Chen J, et al. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors, 2007, 7: 2636-2651 [31] 李红军, 郑力, 雷玉平, 等. 基于EOS/MODIS数据的NDVI与EVI比较研究. 地理科学进展, 2007, 26(1): 26-32 [32] Shuai YM, Schaaf C, Zhang XY, et al. Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics. International Journal of Remote Sensing, 2013, 34: 5997-6016 [33] Peng DL, Wu CY, Li CJ, et al. Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecological Indicators, 2017, 77: 323-336 [34] 侯学会, 牛铮, 高帅, 等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测. 农业工程学报, 2013, 29(1): 142-150 [35] 康峻, 候学会, 牛铮, 等. 基于拟合物候参数的植被遥感决策树分类. 农业工程学报, 2014, 30(9): 148-156 [36] 何云, 黄翀, 李贺, 等. 基于Sentinel-2A影像特征优选的随机森林土地覆盖分类. 资源科学, 2019, 41(5): 992-1001 [37] 常翔宇, 柯长青. 基于随机森林算法的城市不透水面信息提取——以长春市为例. 测绘通报, 2020(11): 43-49 [38] 王怀警, 谭炳香, 王晓慧, 等. 多分类器组合森林类型精细分类. 遥感信息, 2019, 34(2): 104-112 |