[1] Pan YD, Birdsey RA, Fang JY, et al. A large and persistent carbon sink in the world’s forests. Science, 2011, 333: 988-993 [2] 蔡伟祥, 徐丽, 李明旭, 等. 2010—2060年中国森林生态系统固碳速率省际不平衡性及调控策略. 地理学报, 2022, 77(7): 1808-1820 [3] 尹再芳, 孙洪刚, 谭梓峰, 等. 混交林生产力研究进展. 应用生态学报, 2023, 34(11): 3135-3143 [4] Crouzeilles R, Ferreira MS, Chazdon RL, et al. Ecologi-cal restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 2017, 3: e1701345 [5] Arshad A. Forest stand structure and functioning: Current knowledge and future challenges. Ecological Indicators, 2019, 98: 665-677 [6] 刘斌, 张参参, 汪金松, 等. 江西九连山不同恢复模式林分的物种多样性特征. 林业科学研究, 2020, 33(4): 42-52 [7] 周序力, 蔡琼, 熊心雨, 等. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局. 植物生态学报, 2018, 42(7): 703-712 [8] 吴登瑜, 窦啸文, 汤孟平. 天目山针阔混交林结构与碳储量的关系. 应用生态学报, 2023, 34(8): 2029-2038 [9] Geng QW, Muhammad A, Yuan ZX, et al. Plant species composition and diversity along successional gradients in arid and semi-arid regions of China. Forest Eco-logy and Management, 2022, 524: 120542 [10] Huang YY, Chen YX, Castro-Izaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362: 80-83 [11] 赵中华, 惠刚盈. 林分结构多样性研究进展. 林业科学, 2020, 56(9): 143-152 [12] Elizabeth AL, Jonathan AK, Grant MD, et al. Structural diversity as a reliable and novel predictor for ecosystem productivity. Frontiers in Ecology and the Environment, 2023, 21: 33-39 [13] 盛炜彤. 关于我国人工林长期生产力的保持. 林业科学研究, 2018, 31(1): 1-14 [14] 唐小平, 欧阳志云, 蒋亚芳, 等. 中国国家公园空间布局研究. 国家公园, 2023, 1(1): 1-10 [15] 徐金良, 毛玉明, 成向荣, 等. 间伐对杉木人工林碳储量的长期影响. 应用生态学报, 2014, 25(7): 1898-1904 [16] 周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量——生物量方程. 北京: 科学出版社, 龙门书局, 2018 [17] Wu HL, Xiang WH, Fang X, et al. Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area. Scientific Reports, 2017, 7: 4992 [18] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究. Ⅱ. 丰富度、均匀度和物种多样性指数. 生态学报, 1995, 15(3): 268-277 [19] 国家林业局. 结构化森林经营数据调查技术规程(LY/T 2811—2017). 北京: 中国标准出版社, 2017 [20] Yu QS, Rao XQ, Ouyang SN, et al. Changes in taxonomic and phylogenetic dissimilarity among four subtro-pical forest communities during 30 years of restoration. Forest Ecology and Management, 2019, 432: 983-990 [21] 谢锦, 闫巧玲, 张婷, 等. 间伐对日本落叶松人工林林下更新木本植物组成和生长影响的时间效应. 应用生态学报, 2020, 31(8): 2481-2490 [22] 史作民, 刘世荣, 程瑞梅. 宝天曼地区栓皮栎林恢复过程中高等植物物种多样性变化. 植物生态学报, 1998, 22(5): 415-421 [23] 陈旭, 刘宗悦, 徐钧杰, 等. 天目山毛竹林皆伐后群落的恢复特征. 浙江农林大学学报, 2022, 39(4): 705-716 [24] 刘志龙, 明安刚, 贾宏炎, 等. 近自然化改造对桂南马尾松和杉木人工林结构特征的影响. 南京林业大学学报: 自然科学版, 2017, 41(4): 101-107 [25] Liu XJ, Stefan T, He JS, et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society. Biological Sciences, 2018, 285: 20181240 [26] Li Y, Bao WK, Frans B, et al. Drivers of tree carbon storage in subtropical forests. Science of the Total Environment, 2019, 654: 684-693 [27] Wan XH, Joly FX, Jia H, et al. Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. New Phytologist, 2023, 240: 1003-1014 [28] Yuan ZX, Guan QW, Chen XL, et al. Tree diversity increases soil C and N stocks of secondary forests in subtropical China. Catena, 2023, 222: 106812 [29] 叶晓丹, 刘世荣, 栾军伟, 等. 树种丰富度和组成对南亚热带人工林土壤植物源碳保存及有机碳稳定性的影响. 生态学报, 2023, 43(12): 4974-4983 [30] Wang H, Song ZC, Wang JX, et al. The quadratic relationship between tree species richness and topsoil orga-nic carbon stock in a subtropical mixed-species planted forest. European Journal of Forest Research, 2022, 141: 1151-1161 [31] 沈会涛, 张韬, 马文才, 等. 太行山东坡不同林龄杏树林碳储量及其分配特征. 生态学报, 2018, 38(18): 6722-6728 [32] Florian S, Liu XJ, Matthias K, et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Science Advances, 2021, 7: k1643 [33] Miren DR, Hans P, Iciar A, et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. European Journal of Forest Research, 2016, 135: 23-49 [34] 谭珊珊, 王忍忍, 龚筱羚, 等. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 2017, 25(10): 1054-1064 [35] Mariana SP, Werner R, Rupert S, et al. Disentangling the effects of compositional and structural diversity on forest productivity. Journal of Vegetation Science, 2017, 28: 649-658 [36] 黄凯璇, 汤新艺, 秦欢, 等. 近自然经营对杉木人工林地被物和土壤碳氮积累的影响. 生态环境学报, 2020, 29(8): 1556-1565 [37] 邓磊, 朱春云, 于世川, 等. 祁连山青海云杉中龄林混交度对细根形态特征的影响. 林业科学, 2020, 56(1): 191-200 [38] Cai HY, Di XY, Chang SX, et al. Stand density and species richness affect carbon storage and net primary productivity in early and late successional temperate forests differently. Ecological Research, 2016, 31: 525-533 [39] Elizabeth B, Austin H, Adam P, et al. Diversity-productivity relationships in forests of the southeastern United States: Leveraging national inventory data and tree functional traits. Forest Ecology and Management, 2022, 521: 120426 |