[1] Sardans J, Peñuelas J. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24: 261-275 [2] Tränkner M, Tavakol E, Jákli B. Functioning of potas-sium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 2018, 163: 414-431 [3] Srivastava AK, Shankar A, Chandran AKN, et al. Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany, 2019, 71: 608-619 [4] Cuin TA, Dreyer I, Michard E. The role of potassium channels in Arabidopsis thaliana Long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. International Journal of Molecular Sciences, 2019, 19: 926-942 [5] Ahanger MA, Agarwal RM, Tomar NS, et al. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). Journal of Plant Interactions, 2015, 10: 211-223 [6] Jia Q, Zheng C, Sun S, et al. The role of plant cation/proton antiporter gene family in salt tolerance. Biologia Plantarum, 2018, 62: 617-629 [7] Dreyer I, Gomez-Porras JL, Riedelsberger J. The potassium battery: A mobile energy source for transport processes in plant vascular tissues. New Phytologist, 2017, 216: 1049-1053 [8] Critchley CNR, Chambers BJ, Fowbert JA, et al. Plant species richness, functional type and soil properties of grasslands and allied vegetation in English Environmentally Sensitive Areas. Grass and Forage Science, 2002, 57: 82-92 [9] Lüscher A, Mueller-Harvey I, Soussana JF, et al. Potential of legume-based grassland-livestock systems in Europe: A review. Grass and Forage Science, 2014, 69: 206-228 [10] O'Mara FP. The role of grasslands in food security and climate change. Annals of Botany, 2012, 110: 1263-1270 [11] Ammerman CB, Goodrich RD. Advances in mineral nutrition in ruminants. Journal of Animal Science, 1983, 57: 519-533 [12] Naylor JM, Ralston SL. Large animal clinical nutrition. Gut, 1991, 27: 1365-1373 [13] Sanderson MA, Skinner RH, Barker DJ, et al. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Science, 2004, 44: 1132-1144 [14] Vetter S. Rangelands at equilibrium and non-equilib-rium: Recent developments in the debate. Journal of Arid Environments, 2005, 62: 321-341 [15] Song L, Bao X, Liu X, et al. Nitrogen enrichment enhances the dominance of grasses over forbs in a tempe-rate steppe ecosystem. Biogeosciences, 2011, 8: 2341-2350 [16] 付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 2020, 44(5): 475-493 [17] Jia YL, Yu GR, He NP, et al. Spatial and decadal varia-tions in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 2014, 4: 3763 [18] Lü XT, Reed S, Yu Q, et al. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 2013, 19: 2775-2784 [19] Li S, Wang F, Chen M, et al. Mowing alters nitrogen effects on the community-level plant stoichiometry through shifting plant functional groups in a semi-arid grassland. Environmental Research Letters, 2020, 15: 074031 [20] Tripler CE, Kaushal SS, Likens GE, et al. Patterns in potassium dynamics in forest ecosystems. Ecology Letters, 2006, 9: 451-466 [21] Olde Venterink HGM. Nitrogen, Phosphorus and Potassium Flows Controlling Plant Productivity and Species Richness: Eutrophication and Nature Management in Fens and Meadows. PhD Thesis. Utrecht, the Netherlands: Utrecht University, 2000 [22] 姜勇, 徐柱文, 王汝振, 等. 长期施肥和增水对半干旱草地土壤性质和植物性状的影响. 应用生态学报, 2019, 30(7): 2470-2480 [23] Wang M, Moore TR. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 2014, 17: 673-684 [24] 宝音陶格涛, 刘美玲, 包青海, 等. 氮素添加对典型草原区割草场植物群落结构及草场质量指数的影响. 草业学报, 2017, 20(1): 7-14 [25] Mitchell AD, Smethurst PJ. Base cation availability and leaching after nitrogen fertilization of a eucalypt plantation. Soil Research, 2008, 46: 445-454 [26] Jung V, Albert CH, Violle C, et al. Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology, 2014, 102: 45-53 [27] Kichenin E, Wardle DA, Peltzer DA, et al. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 2013, 27: 1254-1261 [28] Lepš J, De Bello F, milauer P, et al. Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography, 2011, 34: 856-863 [29] Klumpp K, Tallec T, Guix N, et al. Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture. Global Change Bio-logy, 2011, 17: 3534-3545 [30] Giese M, Brueck H, Gao YZ, et al. N balance and cycling of Inner Mongolia typical steppe: A comprehensive case study of grazing effects. Ecological Monographs, 2013, 83: 195-219 [31] Collins SL, Knapp AK, Briggs JM, et al. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 1998, 280: 745-747 [32] 张峰, 郑佳华, 赵萌莉, 等. 刈割留茬高度对大针茅草原群落结构及稳定性的影响. 应用生态学报, 2020, 31(5): 1551-1559 [33] Kang L, Han XG, Zhang ZB, et al. Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions: Biological Sciences, 2007, 362: 997-1008 [34] 胡飞龙, 闫妍, 卢晓强, 等. 内蒙古草甸草原生物量碳分配格局. 草业学报, 2016, 25(4): 36-44 [35] 高宗宝, 王洪义, 吕晓涛, 等. 氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C∶N∶P化学计量特征的影响. 生态学杂志, 2017, 36(1): 80-88 [36] Tilman EA, Tilman D, Crawley MJ, et al. Biological weed control via nutrient competition: Potassium limitation of dandelions. Ecological Applications, 1999, 9: 103-111 [37] Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press, 2002 [38] Karimi R, Folt CL. Beyond macronutrients: Element variability and multielement stoichiometry in freshwater invertebrates. Ecology Letters, 2006, 9: 1273-1283 [39] Bai YF, Wu JG, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89: 2140-2153 [40] Yang GJ, Lü XT, Stevens CJ, et al. Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 2019, 189: 769-779 [41] Wang J, Knops JMH, Brassil CE, et al. Increased productivity in wet years drives a decline in ecosystem stability with nitrogen additions in arid grasslands. Ecology, 2017, 98: 1779-1786 [42] 孟亚妮, 李天鹏, 施展, 等. 施肥和增水对弃耕草地土壤酸中和容量的影响. 应用生态学报, 2020, 31(5): 1579-1586 [43] 徐鑫磊, 宋彦涛, 赵京东, 等. 施肥和刈割对呼伦贝尔草甸草原牧草品质的影响及其与植物多样性的关系. 草业学报, 2021, 30(7): 1-10 [44] 蔡江平. 氮水添加对草地土壤缓冲性能及植物矿质元素吸收的影响. 博士论文. 沈阳: 中国科学院沈阳应用生态研究所, 2014 [45] 朱莹, 李焕茹, 庾强, 等. 呼伦贝尔草原土壤养分及生物学特性对氮沉降的响应. 应用生态学报, 2018, 29(10): 3221-3228 [46] 宁志英, 李玉霖, 杨红玲, 等. 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 2019, 43(1): 46-54 [47] Głąb T, Gondek K. The influence of soil compaction and N fertilization on physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture. Geoderma, 2014, 226: 204-212 [48] Gong XY, Chen Q, Dittert K, et al. Nitrogen, phosphorus and potassium nutritional status of semiarid steppe grassland in Inner Mongolia. Plant and Soil, 2011, 340: 265-278 |