[1] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 2010, 34(1): 2-6
[2] Elser JJ, Fagan WF, Kerkhoff AJ, et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186: 593-608
[3] Kooijman S. The stoichiometry of animal energetics. Journal of Theoretical Biology, 1995, 177: 139-149
[4] Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006
[5] 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713
[6] Fang Z, Han XY, Xie MY, et al. Spatial distribution patterns and driving factors of plant biomass and leaf N, P stoichiometry on the Loess plateau of China. Plants, 2021, 10: 10112420
[7] He JS, Wang ZH, Wang XP, et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 2006, 170: 835-848
[8] 陈莹婷, 许振柱. 植物叶经济谱的研究进展. 植物生态学报, 2014, 38(10): 1135-1153
[9] 何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展. 植物生态学报, 2019, 43(12): 1021-1035
[10] Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827
[11] 陈馨悦, 张世挺, 牛克昌. 性状关联跨尺度推演: 高寒草甸植物种内及种间性状的协同与权衡. 科学通报, 2022, 67(10): 986-996
[12] Li SJ, Wang H, Gou W, et al. Leaf functional traits of dominant desert plants in the Hexi Corridor, Northwestern China: Trade-off relationships and adversity strategies. Global Ecology and Conservation, 2021, 28: e01666
[13] Qin J, Shangguan ZP, Xi WM. Seasonal variations of leaf traits and drought adaptation strategies of four common woody species in South Texas, USA. Journal of Forestry Research, 2019, 30: 1715-1725
[14] Shiklomanov AN, Cowdery EM, Bahn M, et al. Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta-analysis. Ecological Applications, 2020, 30: e02064
[15] Huang GJ, Peng SB, Li Y. Variation of photosynthesis during plant evolution and domestication: Implications for improving crop photosynthesis. Journal of Experiment Botany, 2022, 73: 4886-4896
[16] 平川, 王传宽, 全先奎. 环境变化对兴安落叶松氮磷化学计量特征的影响. 生态学报, 2014, 34(8): 1965-1974
[17] 全先奎, 王传宽. 兴安落叶松光合特性对环境的适应及其影响因素. 科学通报, 2016, 61(20): 2273-2286
[18] 杨传平, 姜静, 唐盛松, 等. 帽儿山地区21年生兴安落叶松种源试验. 东北林业大学学报, 2002, 30(6): 1-5
[19] 张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征. 生态学报, 2014, 34(22): 6538-6547
[20] 刘文倩, 李家湘, 龚俊伟, 等. 柯-青冈常绿阔叶林优势树种叶片性状变异及适应策略. 生态学报, 2022, 42(17): 7256-7265
[21] Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 2014, 102: 275-301
[22] Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168: 377-385
[23] Wu TG, Wang GG, Wu QT, et al. Patterns of leaf nitrogen and phosphorus stoichiometry among Quercus acutissima provenances across China. Ecological Complexity, 2014, 17: 32-39
[24] 马丽, 单立山, 解婷婷, 等. 基于同质园实验的两种典型荒漠植物叶片功能性状变异研究. 草地学报, 2022, 30(3): 701-711
[25] 徐朝斌, 钟全林, 程栋梁, 等. 基于地理种源的刨花楠苗木比叶面积与叶片化学计量学关系. 生态学报, 2015, 35(19): 6507-6515
[26] Zheng SX, Shangguan ZP. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees-Structure and Function, 2007, 21: 357-370
[27] 徐睿, 刘静, 王利艳, 等. 不同地理种源杉木根叶功能性状与碳氮磷化学计量分析. 生态学报, 2022, 42(15): 6298-6310
[28] 闫霜, 张黎, 景元书, 等. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 2014, 38(6): 640-652
[29] Han QM, Kawasaki T, Nakano T, et al. Spatial and seasonal variability of temperature responses of bioche-mical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiology, 2004, 24: 737-744
[30] Bahar NHA, Ishida FY, Weerasinghe LK, et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214: 1002-1018
[31] 刘福德, 王中生, 张明, 等. 海南岛热带山地雨林幼苗幼树光合与叶氮、叶磷及比叶面积的关系. 生态学报, 2007, 27(11): 4651-4661
[32] 郭盛磊, 阎秀峰, 白冰, 等. 落叶松幼苗光合特性对氮和磷缺乏的响应. 应用生态学报, 2005, 16(4): 589-594
[33] Sheriff DW, Nambiar EKS, Fife DN. Relationships between nutrient status, carbon assimilation and water use efficiency in Pinus radiata (D. Don) needles. Tree Physiology, 1986, 2: 73-88
[34] Lewis JD, Phillips NG, Logan BA, et al. Leaf photosynthesis, respiration and stomatal conductance in six Eucalyptus species native to mesic and xeric environments growing in a common garden. Tree Physiology, 2011, 31: 997-1006
[35] 王凯, 沈潮, 孙冰, 等. 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 2018, 29(7): 2286-2294
[36] 何茂松, 罗艳, 彭庆文, 等. 新疆67种荒漠植物叶碳氮磷计量特征及其与气候的关系. 应用生态学报, 2019, 30(7): 2171-2180
[37] Long MX, Guo LX, Li J, et al. Effects of water and exogenous Si on element concentrations and ecological stoichiometry of plantain (Plantago lanceolata L.). Journal of Plant Nutrition, 2018, 41: 1263-1275
[38] Lin T, Fang X, Lai YR, et al. Shifts in leaf and branch elemental compositions of Pinus massoniana (Lamb.) following three-year rainfall exclusion. Forests, 2020, 11: f11010113
[39] 洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响. 应用生态学报, 2013, 24(9): 2658-2665
[40] Woods HA, Makino W, Cotner JB, et al. Temperature and the chemical composition of poikilothermic organisms. Functional Ecology, 2003, 17: 237-245
[41] Hu YK, Zhang YL, Liu GF, et al. Intraspecific N and P stoichiometry of Phragmites australis: Geographic patterns and variation among climatic regions. Scientific Reports, 2017, 7: 1-8
[42] Lovelock CE, Feller IC, Ball MC, et al. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecology Letters, 2007, 10: 1154-1163
[43] 王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C∶N∶P化学计量学特征. 植物生态学报, 2011, 35(6): 587-595
[44] 柯世省, 金则新, 陈贤田. 浙江天台山七子花等6种阔叶树光合生态特性. 植物生态学报, 2002, 26(3): 363-371
[45] Oleksyn J, Modrzýnski J, Tjoelker MG, et al. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 1998, 12: 573-590 |