[1] Batjes NH. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 2014, 47: 151-163 [2] Zhang K, Su YZ, Yang R. Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and bio-geographic factors across the desert ecosystem of Hexi Corridor, northwestern China. Journal of Soils and Sediments, 2019, 19: 49-57 [3] 曹雯婕, 李玉强, 陈银萍, 等. 科尔沁沙地不同土地利用类型土壤化学计量特征. 应用生态学报, 2022, 33(12): 3312-3320 [4] He M, Dijkstra FA. Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biology & Biochemistry, 2015, 82: 99-106 [5] 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 5484-5492 [6] 尉剑飞, 王誉陶, 张翼, 等. 黄土高原典型草原植被及土壤化学计量对降水变化的响应. 草地学报, 2022, 30(3): 532-543 [7] Yuan ZY, Chen HYH. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 2015, 5: 465-469 [8] Vesterdal L, Schmidt IK, Callesen I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 2008, 255: 35-48 [9] Xu XF, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 2013, 22: 737-749 [10] He NP, Wang RM, Zhang YH, et al. Carbon and nitrogen storage in Inner Mongolian grasslands: Relationships with climate and soil texture. Pedosphere, 2014, 24: 391-398 [11] 张亚强, 解婷婷, 梁冠军. 降水变化下红砂凋落物分解对干旱荒漠区土壤化学计量特征的影响. 草地学报, 2023, 31(5): 1445-1453 [12] Li JQ, Yan D, Pendall E, et al. Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biology & Biochemistry, 2018, 126: 82-90 [13] 朱玉荷, 肖虹, 王冰, 等. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应. 植物生态学报, 2022, 46(3): 340-349 [14] 王宝荣, 杨佳佳, 安韶山, 等. 黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响. 应用生态学报, 2018, 29(1): 247-259 [15] 牛丽楠, 邵全琴, 宁佳, 等. 黄土高原生态恢复程度及恢复潜力评估. 自然资源学报, 2023, 38(3): 779-794 [16] 周诗晶, 韩炳宏, 姜佳昌, 等. 陇中黄土高原典型草原生物土壤结皮发育对土壤养分的影响. 西北植物学报, 2023, 43(1): 147-154 [17] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000: 25-204 [18] 丁金梅, 王维珍, 米文宝, 等. 宁夏草地土壤有机碳空间特征及其影响因素分析. 生态学报, 2023, 43(5): 1-10 [19] 陶贞, 沈承德, 高全洲, 等. 高寒草甸土壤有机碳储量及其垂直分布特征. 地理学报, 2006, 61(7): 720-728 [20] Yu YH, Chi Y. Ecological stoichiometric characteristics of soil at different depths in a karst plateau mountain area of China. Polish Journal of Environmental Studies, 2019, 29: 969-978 [21] Liu WJ, Chen SY, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 2012, 7: 035401 [22] Tian H, Chen G, Chi Z, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98: 139-151 [23] 涂夏明, 曹军骥, 韩永明, 等. 黄土高原表土有机碳和无机碳的空间分布及碳储量. 干旱区资源与环境, 2012, 26(2): 114-118 [24] 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展. 应用与环境生物学报, 2017, 23(2): 400-408 [25] 马剑, 刘贤德, 金铭, 等. 祁连山5种典型灌丛土壤生态化学计量特征. 西北植物学报, 2021, 41(8): 1391-1400 [26] Yang Y, Fang J, Guo D, et al. Vertical patterns of soil carbon, nitrogen and carbon:nitrogen stoichiometry in Tibetan grasslands. Biogeosciences Discussions, 2010, 7: 1-24 [27] Feng DF, Bao WK, Pang XY. Consistent profile pattern and spatial variation of soil C:N:P stoichiometric ratios in the subalpine forests. Journal of Soils and Sediments, 2017, 17: 2054-2065 [28] Dümig A, Knicker H, Schad P, et al. Changes in soil organic matter composition are associated with forest encroachment into grassland with long-term fire history. European Journal of Soil Science, 2009, 60: 578-589 [29] Niu SL, Wu MY, Han Y, et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 2008, 177: 209-219 [30] Li P, Sayer EJ, Jia Z, et al. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Global Change Biology, 2020, 26: 3015-3027 [31] Yang ZL, Collins SL, Bixby RJ, et al. A meta-analysis of primary productivity and rain use efficiency in terrestrial grassland ecosystems. Land Degradation & Development, 2021, 32: 842-850 [32] 杨永, 卫伟, 王琳, 等. 中国旱区样带尺度植物多样性和生产力与环境因子的关系. 生态学报, 2023, 43(4): 1563-1571 [33] Vitousek PM, Porder S, Houlton BZ, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20: 5-15 [34] 周伟, 牟凤云, 刚成诚, 等. 1982—2010年中国草地净初级生产力时空动态及其与气候因子的关系. 生态学报, 2017, 37(13): 4335-4345 [35] 黄锦学, 熊德成, 刘小飞, 等. 增温对土壤有机碳矿化的影响研究综述. 生态学报, 2017, 37(1): 12-24 [36] Yang YH, Fang JY, Tang YH, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14: 1592-1599 [37] 黄耀, 刘世梁, 沈其荣, 等. 环境因子对农业土壤有机碳分解的影响. 应用生态学报, 2002, 13(6): 709-714 [38] Davidson E, Janssens I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165-173 [39] 宁志英, 李玉霖, 杨红玲, 等. 沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响. 生态学报, 2019, 39(10): 3537-3546 [40] 田玉强, 欧阳华, 宋明华, 等. 青藏高原样带高寒生态系统土壤有机碳分布及其影响因子. 浙江大学学报: 农业与生命科学版, 2007, 33(4): 443-449 [41] 黄锦学, 熊德成, 刘小飞, 等. 增温对土壤有机碳矿化的影响研究综述. 生态学报, 2017, 37(1): 12-24 |