[1] Díaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Sciences, 1998, 9: 113-122 [2] Adler PB, Salguero R, Compagnoni A, et al. Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 740-745 [3] 刘晓娟, 马克平. 植物功能性状研究进展. 中国科学: 生命科学, 2015, 45(4): 325-339 [4] Zheng SX, Ren HY, Lan ZC, et al. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: Scaling from species to community. Biogeosciences, 2010, 7: 1117-1132 [5] 赵娜, 赵新全, 赵亮, 等. 植物功能性状对放牧干扰的响应. 生态学杂志, 2016, 35(7): 1916-1926 [6] 王晓芳, 马红彬, 刘杰, 等. 放牧对草原植物功能性状影响研究进展. 应用生态学报, 2022, 33(2): 569-576 [7] 李西良, 侯向阳, 吴新宏, 等. 草甸草原羊草茎叶功能性状对长期放牧的可塑性响应. 植物生态学报, 2014, 38(5): 440-451 [8] Rusch GM, Skarpe C, Halley DJ. Plant traits link hypothesis about resource-use and response to herbivory. Basic and Applied Ecology, 2009, 10: 466-474 [9] Lienin P, Kleyer M. Plant trait responses to the environment and effects on ecosystem properties. Basic and Applied Ecology, 2012, 13: 301-311 [10] Lavorel S, Grigulis K, Lamarque P, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 2011, 99: 135-147 [11] Díaz S, Hodgson JG, Thompson K, et al. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Sciences, 2004, 15: 295-304 [12] Jackson BG, Peltzer DA, Wardle DA. The within-species leaf economic spectrum does not predict leaf litter decomposability at either the within-species or whole community levels. Journal of Ecology, 2013, 101: 1409-1419 [13] Díaz S, Kattge J, Cornelissen JHC, et al. The global spectrum of plant form and function. Nature, 2016, 529: 167-171 [14] Kattge J, Díaz S, Lavorel S. TRY: A global database of plant traits. Global Change Biology, 2011, 17: 2905-2935 [15] Siefert A, Violle C, Chalmandrier L, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18: 1406-1419 [16] 王堃, 韩建国, 周禾. 中国草业现状及发展战略. 草地学报, 2002, 10(4): 293-297 [17] 宋向阳, 卫智军, 郑淑华, 等. 不同干扰方式对呼伦贝尔典型草原生态系统特征的影响. 生态环境学报, 2018, 27(8): 1405-1410 [18] 张晶, 左小安, 杨阳, 等. 科尔沁沙地草地植物群落功能性状对封育和放牧的响应. 农业工程学报, 2017, 33(24): 261-269 [19] 张景慧, 王铮, 黄永梅, 等. 草地利用方式对温性典型草原优势种植物功能性状的影响. 植物生态学报, 2021, 45(8): 818-833 [20] Díaz S, Lavorel S, Mcintyre S, et al. Plant traits responses to grazing: A global synthesis. Global Change Biology, 2007, 13: 313-341 [21] Cruz P, Quadros FLFD, Theau JP, et al. Leaf traits as functional descriptors of the intensity of continuous gra-zing in native grasslands in the south of Brazil. Rangeland Ecology & Management, 2010, 63: 350-358 [22] 任海彦, 郑淑霞, 白永飞. 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 2009, 33(6): 1065-1074 [23] Kooijman A, Smit A. Grazing as a measure to reduce nutrient availability and plant productivity in acid dune grasslands and pine forests in The Netherlands. Ecological Engineering, 2001, 17: 63-77 [24] Gao YZ, Giese M, Lin S, et al. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 2008, 307: 41-50 [25] Guo YJ, Han L, Li GD, et al. The effects of defoliation on plant community, root biomass and nutrient allocation and soil chemical properties on semi-arid steppes in northern China. Journal of Arid Environments, 2012, 78: 128-134 [26] 王铮. 不同放牧方式对内蒙古典型草原优势种植物功能性状的影响. 硕士论文. 呼和浩特: 内蒙古大学, 2021 [27] 安慧. 放牧干扰对荒漠草原植物叶形状及其相互关系的影响. 应用生态学报, 2012, 23(11): 2992-2996 [28] 何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 2018, 38(19): 6787- 6796 [29] 金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 2015, 39(10): 1021-1032 [30] Zirbel CR, Bassett T, Grman E, et al. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 2017, 54: 1070-1079 [31] Cornelissen JHC, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380 [32] Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827 [33] Silvertown J. Plant coexistence and the niche. Trends in Ecology & Evolution, 2004, 19: 605-611 [34] Khasanova A, Lovell JT, Bonnette J, et al. The genetic architecture of shoot and root trait divergence between mesic and xeric ecotypes of a perennial grass. Frontiers in Plant Science, 2019, 10, doi: 10.1101/301531 [35] 戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应. 应用生态学报, 2015, 26(7): 1921-1927 [36] 吴思雨, 宝音陶格涛, 许宏斌, 等. 放牧强度对内蒙古典型草原糙隐子草功能性状的影响. 应用生态学报, 2021, 32(2): 392-398 [37] Liu ZY, Zhang Z, Zhang TY, et al. Heavy grazing effects on stem elongation and internode allometry: Insights from a natural pasture grass. Grass and Forage Science, 2019, 74: 427-436 [38] 王晓芳, 马红彬, 刘杰, 等. 放牧对草原植物功能性状影响研究进展. 应用生态学报, 2022, 33(2): 569-576 [39] 刘润红, 白金连, 包含, 等. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联. 植物生态学报, 2020, 44(8): 828-841 [40] Wilson PJ, Thompson KEN, Hodgson JG. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143: 155-162 [41] 石明明, 牛得草, 王莹, 等. 围封和放牧管理对高寒草甸植物功能性状和功能多样性的影响. 西北植物学报, 2017, 37(6): 1216-1225 |