[1] 刘仁, 陈伏生, 方向民, 等. 凋落物添加和移除对杉木人工林土壤水解酶活性及其化学计量比的影响. 生态学报, 2020, 40(16): 5739-5750 [2] 陆康英, 苏晨辉, 邓成, 等. 广东省杉木生长适宜性及分布预测. 东北林业大学学报, 2023, 51(2): 62-69 [3] Schnabel F, Liu X, Kunz M, et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Science Advances, 2021, 7: eabk1643 [4] 王淑真, 梁晶晶, 包明琢, 等. 不同林龄杉木林土壤磷形态与解磷菌变化. 林业科学, 2022, 58(2): 58-69 [5] Zhang Y, Xu Q, Zhang B, et al. Contrasting water-use patterns of Chinese fir among different plantation types in a subtropical region of China. Frontiers in Plant Science, 2022, 13: 946508 [6] 孔令仑, 黄志群, 何宗明, 等. 不同林龄杉木人工林的水分利用效率与叶片养分浓度. 应用生态学报, 2017, 28(4): 1069-1076 [7] Kang H, Seely B, Wang G, et al. Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian Province, China. New Zealand Journal of Forestry Science, 2017, 47: 20 [8] 梁家凤, 赵银兵, 栾军伟, 等. 2000—2019年中国南方竹林区水分利用效率时空特征及驱动机制. 生态学报, 2023, 43(12): 5150-5161 [9] Li X, Chen G, Qin W, et al. Differences in responses of tree-ring δ13C in angiosperms and gymnosperms to climate change on a global scale. Forest Ecology and Management, 2021, 492: 119247 [10] Korell L, Auge H, Chase J, et al. We need more realistic climate change experiments for understanding ecosystems of the future. Global Change Biology, 2020, 26: 325-327 [11] 刘小英, 段爱国, 张建国, 等. 不同种源杉木树轮α纤维素δ13C对年气候因子的响应. 林业科学研究, 2020, 33(2): 9-18 [12] Huang Z, Ran S, Fu Y, et al. Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. Journal of Ecology, 2022, 110: 2179-2189 [13] 吴晨, 熊德成, 张丽, 等. 增温对杉木幼树不同季节叶片非结构性碳水化合物及碳氮同位素的影响. 应用与环境生物学报, 2022, 28(6): 1564-1570 [14] Fang X, Lin T, Zhang BY, et al. Regulating carbon and water balance as a strategy to cope with warming and drought climate in Cunninghamia lanceolata in southern China. Frontiers in Plant Science, 2022, 13: 1048930 [15] 邬子俊, 段晓清, 李文卿, 等. 混交对亚热带针叶树根际土壤氮矿化和微生物特性的影响. 生态学报, 2022, 42(20): 8414-8424 [16] 邓海燕, 莫晓勇, 梅嘉仪, 等. 桉树人工混交林林分生长与土壤养分研究. 西北农林科技大学学报: 自然科学版, 2020, 48(1): 95-102 [17] Farquhar G, Ehleringer J, Hubick K. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537 [18] 刘菊红, 张军, 吕世杰, 等. 荒漠草原主要植物种间关系对降水年型变化的响应. 西北植物学报, 2019, 39(7): 1289-1297 [19] 潘磊, 段文标, 于澎涛, 等. 气候因子对不同竞争等级华北落叶松径向生长的影响. 东北林业大学学报, 2022, 50(11): 16-22 [20] Semyung K, 潘磊磊, 时忠杰, 等. 不同竞争强度下的沙地樟子松天然林树木径向生长及其气候响应. 生态学杂志, 2019, 38(7): 1962-1972 [21] 黄伟程, 高露双, 赵冰倩. 不同间伐强度下竞争对东北阔叶红松林主要树种生长-气候关系的影响. 北京林业大学学报, 2023, 45(1): 30-39 [22] 刘雨, 高光耀, 王棣, 等. 不同疏伐强度下黄土丘陵区刺槐林的水分利用特征. 生态学报, 2023, 43(7): 2845-2855 [23] McCarroll D, Loader NJ. Stable isotopes in tree rings. Quaternary Science Reviews, 2004, 23: 771-801 [24] 王根绪, 夏军, 李小雁, 等. 陆地植被生态水文过程前沿进展: 从植物叶片到流域. 科学通报, 2021, 66(增刊2): 3667-3683 [25] Schleser G, Frielingsdorf J, Blair A. Carbon isotope behaviour in wood and cellulose during artificial aging. Chemical Geology, 1999, 158: 121-130 [26] 周佳, 孟平, 张劲松, 等. 河南民权与陕西白水刺槐径向生长与水分利用效率对气候响应的差异. 林业科学研究, 2021, 34(6): 1-8 [27] 周雄, 孙鹏森, 张明芳, 等. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系. 植物生态学报, 2020, 44(6): 628-641 [28] 秦莉, 尚华明, 张同文, 等. 天山南北坡树轮稳定碳同位素对气候的响应差异. 生态学报, 2021, 41(14): 5713-5724 [29] 阮亚男, 萧英男, 杨立新, 等. 大连市黑松树木水分利用效率的环境响应. 应用生态学报, 2017, 28(9): 2849-2855 [30] 史晓亮, 吴梦月, 张娜, 等. 三江平原植被水分利用效率时空变化及其对气象因子变化的响应. 生态学杂志, 2020, 39(5): 1651-1663 [31] 顾文杰, 周广胜, 吕晓敏, 等. 克氏针茅物候对气候变暖和水分变化的响应及其光合生理生态机制. 生态学报, 2022, 42(20): 8322-8330 [32] 冯晓龙, 刘冉, 李从娟, 等. 梭梭和多枝柽柳的枝干光合及其主要影响因子. 应用生态学报, 2022, 33(2): 344-352 [33] Farquhar G, O’Leary M, Berry J. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982, 9: 121-137 [34] 刘立斌, 许海洋, 郭银明, 等. 基于树木年轮定量重建过去50年贵州典型森林优势树种的地上生物量与生产力变化. 生态学报, 2020, 40(10): 3441-3451 [35] Huang Y, Chen Y, Castro I, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362: 80-83 [36] Lu K, Chen N, Zhang C, et al. Drought enhances the role of competition in mediating the relationship between tree growth and climate in semi-arid areas of Northwest China. Forests, 2019, 10: 804 |