[1] Walker AP, De Kauwe MG, Bastos A, et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 2021, 229: 2413-2445 [2] Schleuss PM, Widdig M, Biederman LA, et al. Microbial substrate stoichiometry governs nutrient effects on nitrogen cycling in grassland soils. Soil Biology and Biochemistry, 2021, 155: 108168 [3] Chen H, Zhu QA, Peng CH, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19: 2940-2955 [4] Yang YH, Luo YQ. Carbon:nitrogen stoichiometry in forest ecosystems during stand development. Global Eco-logy and Biogeography, 2011, 20: 354-361 [5] Yang YH, Fang JY, Ji CJ, et al. Stoichiometric shifts in surface soils over broad geographical scales: Evidence from China's grasslands. Global Ecology and Biogeography, 2014, 23: 947-955 [6] Sistla SA, Schimel JP. Stoichiometric flexibility as a regu-lator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytologist, 2012, 196: 68-78 [7] Norby R, Cotrufo MF. Global change: A question of litter quality. Nature, 1998, 396: 17-18 [8] Penuelas J, Sardans J, Rivas-Ubach A, et al. The human-induced imbalance between C, N and P in Earth's life system. Global Change Biology, 2012, 18: 3-6 [9] Yang Y, Liu H, Yang X, et al. Plant and soil elemental C:N:P ratios are linked to soil microbial diversity during grassland restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 806: 150557 [10] Yuan XB, Niu DC, Gherardi LA, et al. Linkages of stoi-chiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment. Soil Biology and Biochemistry, 2019, 138: 107580 [11] 彭佩钦, 张文菊, 童成立, 等. 洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系. 应用生态学报, 2005, 16(10): 1872-1878 [12] 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极. 中国科学院院刊, 2017, 32(9): 924-931 [13] Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2012, 2: 663-667 [14] 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12 [15] 白永飞, 潘庆民, 邢旗. 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 2016, 61(2): 201-212 [16] 张骞, 马丽, 张中华, 等. 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望. 生态学报, 2019, 39(20): 7441-7451 [17] Wu J, Wang H, Li G, et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Scientific Reports, 2020, 10: 21271 [18] 喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 2020, 28(6): 1702-1710 [19] Dong L, Li JJ, Sun J, et al. Soil degradation influences soil bacterial and fungal community diversity in over-grazed alpine meadows of the Qinghai-Tibet Plateau. Scientific Reports, 2021, 11: 11538 [20] Thapa R, Mirsky SB, Tully KL. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. Journal of Environmental Quality, 2018, 47: 1400-1411 [21] Xiao C, Janssens IA, Zhou Y, et al. Strong stoichiome-tric resilience after litter manipulation experiments: A case study in a Chinese grassland. Biogeosciences, 2015, 12: 757-767 [22] Rinnan R, Michelsen A, Jonasson S. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Applied Soil Ecology, 2008, 39: 271-281 [23] Almagro M, Ruiz-Navarro A, Díaz-Pereira E, et al. Plant residue chemical quality modulates the soil microbial response related to decomposition and soil organic carbon and nitrogen stabilization in a rainfed Mediterranean agroecosystem. Soil Biology and Biochemistry, 2021, 156: 108198 [24] 杨振安, 姜林, 徐颖怡, 等. 青藏高原高寒草甸植被和土壤对短期禁牧的响应. 生态学报, 2017, 37(23): 7903-7911 [25] Shi C, Silva LCR, Zhang H, et al. Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China. Agricultural and Forest Meteorology, 2015, 200: 21-29 [26] Yang ZA, Xiong W, Xu Y, et al. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environmental Monitoring and Assessment, 2016, 188: 678-690 [27] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [28] Lovell RD, Jarvis SC, Bardgett RD. Soil microbial biomass and activity in long-term grassland: Effects of mana-gement changes. Soil Biology and Biochemistry, 1995, 27: 969-975 [29] Wu J, He ZL, Wei WX, et al. Quantifying microbial biomass phosphorus in acid soils. Biology and Fertility of Soils, 2000, 32: 500-507 [30] German DP, Weintraub MN, Grandy AS, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 2011, 43: 1387-1397 [31] 张海阔, 张宝刚, 周钟昱, 等. 亚热带天然林转变为毛竹林和茶园对土壤胞外酶活性的影响. 农业环境科学学报, 2022, 41(4): 826-833 [32] Zhou R, El-Naggar A, Li Y, et al. Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions. Environmental Science and Pollution Research, 2021, 28: 28777-28788 [33] Zhang HK, Fang YY, Zhang BG, et al. Land-use-driven change in soil labile carbon affects microbial community composition and function. Geoderma, 2022, 426: 116056 [34] Jackson R, Lajtha K, Crow S, et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution and Systematics, 2017, 48: 419-445 [35] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947 [36] Guo N, Degen AA, Deng B, et al. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan Plateau. Agriculture, Ecosystems and Environment, 2019, 284: 106593 [37] Gao XL, Li XG, Zhao L, et al. Shrubs magnify soil phosphorus depletion in Tibetan meadows: Conclusions from C:N:P stoichiometry and deep soil profiles. Science of the Total Environment, 2021, 785: 147320 [38] Kan ZR, Virk AL, Wu G, et al. Priming effect intensity of soil organic carbon mineralization under no-till and residue retention. Applied Soil Ecology, 2020, 147: 103445 |