[1] 王伦, 郑粉莉, 师宏强, 等. 壤中流和土壤解冻深度对黑土坡面融雪侵蚀的影响. 应用生态学报, 2021, 32(12): 4177-4185 [2] 范昊明, 郭萍, 武敏, 等. 春季解冻期白浆土融雪侵蚀模拟研究. 水土保持通报, 2011, 31(6): 130-133 [3] 胡伟, 樊华, 李浩, 等. 黑土区治理后侵蚀沟道融雪侵蚀观测研究. 水土保持学报, 2018, 32(5): 84-90 [4] Larionov GA, Bushueva OG, Dobrovol'Skaya NG, et al. Destruction of soil aggregates in slope flows. Eurasian Soil Science, 2007, 40: 1128-1134 [5] 季山, 张德伟, 宋文生. 黑龙江省积雪和融雪径流的初步研究. 黑龙江水专学报, 1994(3): 7-17 [6] 杨鑫, 刘刚, 谢云, 等. 东北黑土区北部典型小流域融雪径流及发生条件分析. 中国水土保持科学, 2019, 17(4): 34-40 [7] 赵娅君, 郑粉莉, 安小兵, 等. 典型黑土区坡耕地融雪、风力、降雨复合侵蚀效应. 应用生态学报, 2023, 34(9): 2421-2428 [8] Ma RM, Li ZX, Cai CF, et al. The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). Catena, 2014, 121: 279-287 [9] Wang JG, Li ZX, Cai CF, et al. Effects of stability, transport distance and two hydraulic parameters on aggregate abrasion of Ultisols in overland flow. Soil and Tillage Research, 2013, 126: 134-142 [10] Asadi H, Ghadiri H, Rose CW, et al. Interrill soil erosion processes and their interaction on low slopes. Earth Surface Processes and Landforms, 2007, 32: 711-724 [11] 方华军, 杨学明, 张晓平, 等. 黑土坡耕地侵蚀和沉积对物理性组分有机碳积累与损耗的影响. 土壤学报, 2007, 44(3): 467-474 [12] 申艳, 张晓平, 梁爱珍, 等. 黑土坡耕地土壤流失形态分析: 以一次降雨为例. 干旱地区农业研究, 2008, 26(6): 224-229 [13] Wang JG, Li ZX, Cai CF, et al. Effects of transport distance and flow discharge of overland flow on destruction of Ultisol aggregates. Particuology, 2012, 10: 607-613 [14] 余冰. 含沙水流和坡面糙度对红壤团聚体输移破坏影响. 硕士论文. 武汉: 华中农业大学, 2017 [15] 秦琪珊, 郑粉莉, 师宏强, 等. 东北黑土坡面降雨和汇流对土壤团聚体流失和颗粒迁移的影响. 中国水土保持科学, 2023, 21(1): 1-9 [16] 梁运江, 陈旸, 宋涛, 等. 季节性冻融对苹果梨园机械稳定性团聚体的影响. 土壤通报, 2019, 50(3): 562-570 [17] Chow TL, Rees HW, Monteith J. Seasonal distribution of runoff and soil loss under four tillage treatments in the upper St. John River valley New Brunswick, Canada. Canadian Journal of Soil Science, 2000, 80: 649-660 [18] Lehrsch GA. Freeze-thaw cycles increase near-surface aggregate stability. Soil Science, 1998, 163: 63-70 [19] Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability. Catena, 2003, 52: 1-8 [20] Ma RM, Jiang Y, Liu B, et al. Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles. Soil and Tillage Research, 2021, 207: 104855 [21] 金万鹏, 范昊明, 刘博, 等. 冻融交替对黑土团聚体稳定性的影响. 应用生态学报, 2019, 30(12): 4195-4201 [22] 中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978 [23] Zhang B, Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma, 2001, 99: 123-145 [24] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility. Ⅰ. Theory and methodo-logy. European Journal of Soil Science, 2016, 67: 11-21 [25] 廖凯华, 徐绍辉, 吴吉春, 等. 不同土壤转换函数预测砂土非饱和导水率的对比分析. 水科学进展, 2013, 24(4): 560-567 [26] Li GY, Fan HM. Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China. Pedosphere, 2014, 24: 285-290 [27] 顾汪明, 周金星, 王彬, 等. 冻融循环作用对黑土水稳性团聚体特征的影响. 中国水土保持科学, 2020, 18(4): 45-52 [28] Wang EH, Cruse RM, Chen XW, et al. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Canadian Journal of Soil Science, 2012, 92: 529-536 [29] 姜宇, 范昊明, 侯云晴, 等. 基于同步辐射显微CT研究冻融循环对黑土团聚体结构特征的影响. 生态学报, 2019, 39(11): 4080-4087 [30] Sahin U, Angin I, Kiziloglu FM. Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash. Soil and Tillage Research, 2008, 99: 254-260 [31] Edwards LM. The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soils. Journal of Soil Science, 1991, 42: 193-204 [32] 河海大学《水利大辞典》编辑修订委员会. 水利大辞典. 上海: 上海辞书出版社, 2015 [33] 朱龙祥, 范昊明, 郭成久, 等. 冻融作用对原状棕壤抗剪强度的影响. 水土保持学报, 2021, 35(2): 55-60 [34] 张钦弟, 刘剑荣, 杨磊, 等. 半干旱黄土区植被恢复对土壤团聚体稳定性及抗侵蚀能力的影响. 生态学报, 2022, 42(22): 9057-9068 [35] 牛浩, 罗万清, 王晋峰, 等. 冻融对东北黑土风干团聚体与水稳性团聚体组成及稳定性的影响. 土壤通报, 2020, 51(4): 841-847 [36] 左小锋, 王磊, 郑粉莉, 等. 冻融循环和土壤性质对东北黑土抗剪强度的影响. 水土保持学报, 2020, 34(2): 30-35 [37] Liu CG, Li ZB, Fu SH, et al. Influence of soil aggregate characteristics on the sediment transport capacity of overland flow. Geoderma, 2020, 369: 114338 [38] Tian JF, Ye WJ, Yang GS. The analysis of effects on shear strength characteristics of loess by moisture content changes and freeze-thaw circle. ISRM Young Scholars Symposium on Rock Mechanics, Beijing, 2014: 415-420 |