[1] 李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响. 生态学报, 2011, 31(4): 895-905 [2] 李英年, 薛晓娟, 王建雷, 等. 典型高寒植物生长繁殖特征对模拟气候变化的短期响应. 生态学杂志, 2010, 29(4): 624-629 [3] Li LH, Zhang YL, Wu JS, et al. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Science of the Total Environment, 2019, 678: 21-29 [4] Li M, Wu JS, Song CQ, et al. Temporal variability of precipitation and biomass of alpine grasslands on the northern Tibetan Plateau. Remote Sensing, 2019, 11: 360 [5] 赵倩倩, 张京朋, 赵天保, 等. 2000年以来中国区域植被变化及其对气候变化的响应. 高原气象, 2021, 40(2): 292-301 [6] Liu HY, Mi ZR, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4051-4056 [7] 朱宝文, 严德行, 谢启玉, 等. 青海湖地区气候变化对西北针茅生长发育和产量的影响. 草业科学, 2011, 28(7): 1357-1363 [8] 李积兰, 李希来. 高寒草甸矮嵩草的环境适应性研究进展. 生态科学, 2016, 35(2): 156-165 [9] 刘伟, 王长庭, 赵建中, 等. 矮嵩草草甸植物群落数量特征对模拟增温的响应. 西北植物学报, 2010, 30(5): 995-1003 [10] 沈振西, 周兴民, 陈佐忠, 等. 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应. 植物生态学报, 2002, 26(3): 288-294 [11] 王长庭, 王启基, 沈振西, 等. 高寒矮嵩草草甸群落植物多样性和初级生产力对模拟降水的响应. 西北植物学报, 2003, 23(10): 1713-1718 [12] Wang H, Liu HY, Cao GM, et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 2020, 23: 701-710 [13] Yu HY, Luedeling E, Xu JC. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 22151-22156 [14] Zhang Q, Kong DD, Shi PJ, et al. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982-2013). Agricultural and Forest Meteorology, 2018, 248: 408-417 [15] Suonan J, Classen AT, Sanders NJ, et al. Plant phenological sensitivity to climate change on the Tibetan Pla-teau and relative to other areas of the world. Ecosphere, 2019, 10: e02543 [16] Shen MG, Piao SL, Dorji T, et al. Plant phenological responses to climate change on the Tibetan Plateau: Research status and challenges. National Science Review, 2015, 2: 454-467 [17] Spano D, Cesaracci C, Duce P, et al. Phenological stages of natural species and their use as climate indicators. International Journal of Biometeorology, 1999, 42: 124-133 [18] Guo L, Chen J, Luedeling E, et al. Early-spring soil warming partially offsets the enhancement of alpine grassland aboveground productivity induced by warmer growing seasons on the Qinghai-Tibetan Plateau. Plant and Soil, 2018, 425: 177-188 [19] Li PX, Zhu WQ, Xie ZY. Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands. Ecological Indicators, 2021, 121: 107036 [20] Song MH, Zhou BR, Huo JJ, et al. Linking climate sensitivity of plant phenology to population fitness in alpine meadow. Journal of Geophysical Research: Biogeosciences, 2022, 127: e2022JG007008 [21] Chen J, Luo YQ, Chen YX, et al. Plants with leng-thened phenophases increase their dominance under warming in an alpine plant community. Science of the Total Environment, 2020, 728: 138891 [22] Gao YH, Zhou X, Wang Q, et al. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Science of the Total Environment, 2013, 444: 356-362 [23] 马扶林, 刘小伟, 朵莹, 等. 日尺度下水热因子变化对青藏高原高寒草原生产力的影响特征. 生态学报, 2023, 43(9): 3719-3728 [24] Chen XQ, An S, Inouye DW, et al. Temperature and snowfall trigger alpine vegetation green-up on the world's roof. Global Change Biology, 2015, 21: 3635-3646 [25] Zhu WQ, Zheng ZT, Jiang N, et al. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 248: 177-184 [26] 刘杰, 汲玉河, 周广胜, 等. 2000—2020年青藏高原植被净初级生产力时空变化及其气候驱动作用. 应用生态学报, 2022, 33(6): 1533-1538 [27] Ye JS, Reynolds JF, Sun GJ, et al. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Climatic Change, 2013, 119: 321-332 [28] 伏洋, 张国胜, 李凤霞, 等. 青海高原气候变化的环境响应. 干旱区研究, 2009, 26(2): 267-276 [29] Li S, Dong SK, Fu YS, et al. Air or soil temperature matters the responses of alpine plants in biomass accumulation to climate warming. Science of the Total Environment, 2022, 844: 157141 [30] 王力, 张强. 近20年青藏高原典型高寒草甸化草原植物物候变化特征. 高原气象, 2018, 37(6): 1528-1534 [31] Li X, Jiang LL, Meng FD, et al. Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 2016, 7: 12489 [32] 李晓婷, 郭伟, 倪向南, 等. 高寒草甸植物物候对温度变化的响应. 生态学报, 2019, 39(18): 6670-6680 [33] Zavaleta ES, Thomas BD, Chiariello NR, et al. Plants reverse warming effect on ecosystem water balance. Proceeding of the National Academy of Sciences of the Uni-ted States of America, 2003, 100: 9892-9893 [34] König P, Tautenhahn S, Cornelissen JHC, et al. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecology and Biogeography, 2018, 27: 310-321 [35] 王一静, 王长庭, 刘丹, 等. 降水变化对高寒草甸两种植物不同器官生物量和养分分配的影响. 应用与环境生物, 2024, 30(1): 65-74 [36] Falster DS, Westoby M. Plant height and evolutionary games. Trends in Ecology & Evolution, 2003, 18: 337-343 [37] 朱宝文, 侯俊岭, 严德行, 等. 草甸化草原优势牧草冷地早熟禾生长发育对气候变化的响应. 生态学杂志, 2012, 31(6): 1525-1532 [38] 魏永林, 严德行, 宋理明, 等. 青海湖地区草甸化草原主要优势种牧草对气候变化的响应. 青海草业, 2011, 20(2): 2-7 |