[1] 杨文府, 刘珺, 汪雯雯, 等. 基于多光谱遥感数据的生物多样性监测与评估. 光谱学与光谱分析, 2023, 43(4): 1282-1290 [2] 刘鲁霞, 庞勇, 桑国庆, 等. 普洱季风常绿阔叶林乔木物种多样性高分辨率遥感估测. 生态学报, 2022, 42(20): 8398-8413 [3] 杨泽至, 舒清态. 遥感技术在森林树种多样性监测中的应用研究进展. 世界林业研究, 2022, 35(4): 33-39 [4] Ali I, Cawkwell F, Dwyer E, et al. Satellite remote sensing of grasslands: From observation to management. Journal of Plant Ecology, 2016, 9: 649-671 [5] 朱媛君, 杨晓晖, 时忠杰, 等. 林分因子对张北杨树人工林林下草本层物种多样性的影响. 生态学杂志, 2018, 37(10): 2869-2879 [6] Palmer MW, Earls PG, Hoagland BW, et al. Quantitative tools for perfecting species lists. Environmetrics, 2002, 13: 121-137 [7] 李飞, 李冰, 闫慧, 等. 草地遥感研究进展与展望. 中国草地学报, 2022, 44(12): 87-99 [8] 刘兵兵, 赵鹏武, 周梅, 等. 林窗对大兴安岭南段杨桦次生林林下更新特征的影响. 林业资源管理, 2019, 10(4): 31-36 [9] 周来. 落叶松天然林灌草多样性对林分乔木特征的响应. 森林与环境学报, 2023, 43(1): 44-51 [10] 吴慧, 徐学红, 冯晓娟, 等. 全球视角下的中国生物多样性监测进展与展望. 生物多样性, 2022, 30(10): 22434 [11] 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望. 植物生态学报, 2022, 46(10): 1151-1166 [12] 彭羽, 王越, 马江文, 等. 基于实地调查和高光谱数据的浑善达克沙地中部植物α多样性遥感估测. 生态学报, 2019, 39(13): 4883-4891 [13] 田佳玉, 王彬, 张志明, 等. 光谱多样性在植物多样性监测与评估中的应用. 植物生态学报, 2022, 46(10): 1129-1150 [14] Polley HW, Yang CH, Wilsey BJ, et al. Spectral hete-rogeneity predicts local-scale gamma and beta diversity of mesic grasslands. Remote Sensing, 2019, 11: 458 [15] Wang R, Gamon JA, Cavender BJ, et al. The spatial sensitivity of the spectral diversity-biodiversity relationship: An experimental test in a prairie grassland. Ecological Applications, 2018, 28: 541-556 [16] 孙伟伟, 刘围围, 王煜淼, 等. 2010—2022年全球湿地高光谱遥感研究进展与展望. 遥感学报, 2023, 27(6): 1281-1299 [17] 杨玉丽, 肖辉杰, 辛智鸣, 等. 基于激光雷达与高光谱的荒漠绿洲农田防护林衰退程度评估. 应用生态学报, 2023, 34(4): 1043-1050 [18] Tueller PT. Remote sensing science applications in arid environments. Remote Sensing of Environment, 1987, 23: 143-154 [19] 刘爽, 于海业, 隋媛媛, 等. 大豆病害分类的高光谱分析. 光谱学与光谱分析, 2023, 43(5): 1550-1555 [20] 蒋明明. 基于遥感光谱信息的湿地植被分类和监测方法研究. 博士论文. 兰州: 兰州交通大学, 2022 [21] 曹益飞, 徐焕良, 吴玉强, 等. 基于时序高光谱和多任务学习的水稻病害早期预测研究. 农业机械学报, 2022, 53(11): 288-298 [22] 易俐娜, 张桂峰, 魏征, 等. 利用无人机高光谱影像的红树林群落物种分类. 测绘通报, 2022, 548(11): 26-31 [23] 刘银年, 薛永祺. 星载高光谱成像载荷发展及关键技术. 测绘学报, 2023, 52(7): 1045-1058 [24] 帅爽, 张志, 张天, 等. 特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法. 农业工程学报, 2023, 39(9): 287-293 [25] Watson J, Dudley N, Segan D, et al. The performance and potential of protected areas. Nature, 2014, 515: 67-73 [26] Lindenmayer DB, Nix HA. Ecological principles for the design of wildlife corridors. Conservation Biology, 1993, 7: 627-630 [27] Lai K, Gomes C, Schwartz M, et al. The steiner multigraph problem: Wildlife corridor design for multiple species. Proceedings of the AAAI Conference on Artificial Intelligence, 2011, 25: 1357-1364 [28] Cardinale B, Srivastava D, Emmett DJ, et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 2006, 443: 989-992 [29] Schneider FD, Morsdorf F, Schmid B, et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 2017, 8: 1441 [30] Underwood EC, Ustin SL, Ramirez CM. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California. Environmental Management, 2007, 39: 63-83 [31] Adam E, Mutanga O. Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using Field spectrometry. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64: 612-620 [32] Sankey JB, Sankey TT, Li JR, et al. Quantifying plant soil nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sensing of Environment, 2021, 253: 112223 [33] Marcinkowska OA, Jarocinska A, Bzdega K, et al. Classification of expansive grassland species in different growth stages based on hyperspectral and LiDAR data. Remote Sensing, 2018, 10: 22 [34] Paz-Kagan T, Chang JG, Shoshany M, et al. Assessment of plant species distribution and diversity along a climatic gradient from Mediterranean woodlands to semi-arid shrublands. Giscience & Remote Sensing, 2021, 58: 929-953 [35] Asner GP, Martin RE, Tupayachi R, et al. Amazonian functional diversity from forest canopy chemical assembly. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 5604-5609 [36] Chang CI. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Transactions on Information Theory, 2000, 46: 1927-1932 [37] Dahlin KM. Spectral diversity area relationships for assessing biodiversity in a wildland-agriculture matrix. Ecological Applications, 2016, 26: 2758-2768 [38] Hall K, Johansson LJ, Sykes MT, et al. Inventorying management status and plant species richness in semi-natural grasslands using high spatial resolution imagery. Applied Vegetation Science, 2010, 13: 221-233 [39] Kruse FA, Lefkoff AB, Boardman JW, et al. The spectral image processing system (SIPS)-interactive visuali-zation and analysis of imaging spectrometer data. AIP Conference Proceedings, 1993, 283: 192-201 [40] Laliberté E, Schweiger AK, Legendre P. Partitioning plant spectral diversity into alpha and beta components. Ecology Letters, 2020, 23: 370-380 [41] Rocchini D, Balkenhol N, Carter GA, et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecological Informatics, 2010, 5: 318-329 [42] Whittake RH. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 1960, 30: 279-338 [43] Gholizadeh H, Gamon JA, Townsend PA, et al. Detecting prairie biodiversity with airborne remote sensing. Remote Sensing of Environment, 2019, 221: 38-49 [44] 吴倩. 基于机载高光谱遥感数据的森林乔木树种多样性研究. 博士论文. 合肥: 安徽农业大学, 2018 [45] Torresani M, Rocchini D, Sonnenschein R, et al. Estimating tree species diversity from space in an alpine conifer forest: The Rao's Q diversity index meets the spectral variation hypothesis. Ecological Informatics, 2019, 52: 26-34 [46] Madonsela S, Cho MA, Ramoelo A, et al. Remote sen-sing of species diversity using Landsat 8 spectral variables. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 133: 116-127 [47] Schäfer E, Heiskanen J, Heikinheimo V, et al. Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data. Ecological Indicators, 2016, 64: 49-58 [48] Lucas KL, Carter GA. The use of hyperspectral remote sensing to assess vascular plant species richness on Horn Island, Mississippi. Remote Sensing of Environment, 2008, 112: 3908-3915 [49] Laurin GV, Chan J, Chen Q, et al. Biodiversity mapping in a tropical west African forest with airborne hyperspectral data. PLoS One, 2014, 9(6): e97910 [50] Kalacska M, Sanchez GA, Rivard B, et al. Ecological fingerprinting of ecosystem succession: Estimating secon-dary tropical dry forest structure and diversity using imaging spectroscopy. Remote Sensing of Environment, 2007, 108: 82-96 [51] Asner GP, Martin RE, Anderson CB, et al. Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing of Environment, 2015, 158: 15-27 [52] Martin R, Chadwick KD, Brodrick P, et al. An approach for foliar trait retrieval from airborne imaging spectroscopy of tropical forests. Remote Sensing, 2018, 199: 10 [53] Wang Z, Chlus A, Geygan R, et al. Foliar functional traits from imaging spectroscopy across biomes in eastern North America. New Phytologist, 2020, 228: 494-511 [54] Pandey P, Ge YF, Stoerger V, et al. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 2017, 8: 1348 [55] Danner M, Berger K, Wocher M, et al. Retrieval of biophysical crop variables from multi-angular canopy spectroscopy. Remote Sensing, 2017, 9: 21 [56] Burnett AC, Serbin SP, Rogers A. Source:sink imba-lance detected with leaf- and canopy-level spectroscopy in a field-grown crop. Plant, Cell & Environment, 2021, 44: 2466-2479 [57] Ely KS, Burnett AC, Lieberman W, et al. Spectroscopy can predict key leaf traits associated with source-sink balance and carbon-nitrogen status. Journal of Experimental Botany, 2019, 70: 1789-1799 [58] Ollinger SV. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist, 2011, 189: 375-394 [59] 童新, 杨震雷, 张亦然, 等. 基于不同阶微分高光谱植被指数的牧区草场地上生物量估算. 草地学报, 2022, 30(9): 2438-2448 [60] 王秀梅. 内蒙古典型草原植被地上生物量遥感反演. 博士论文. 呼和浩特: 内蒙古大学, 2022 [61] Wang ZH, Townsend PA, Schweiger AK, et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sensing of Environment, 2019, 221: 405-416 [62] Skidmore AK, Ferwerda JG, Mutanga O, et al. Forage quality of savannas-simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sensing of Environment, 2010, 114: 64-72 [63] Singh A, Serbin SP, McNeil BE, et al. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecological Applications, 2015, 25: 2180-2197 [64] Jacquemoud S, Baret F. PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 1990, 34: 75-91 [65] Jacquemoud S, Verhoef W, Baret F, et al. PROSPECT+SAIL models: A review of use for vegetation characteri-zation. Remote Sensing of Environment, 2009, 113: S56-S66 [66] Yebra M, Chuvieco E. Linking ecological information and radiative transfer models to estimate fuel moisture content in the mediterranean region of Spain: Solving the ill-posed inverse problem. Remote Sensing of Environment, 2009, 113: 2403-2411 [67] Féret JB, Gitelson AA, Noble SD, et al. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sensing of Environment, 2017, 193: 204-215 [68] Féret JB, Le MG, Jay S, et al. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sensing of Environment, 2019, 231: 110959 [69] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展. 遥感学报, 2016, 20(5): 689-707 [70] Toivonen T, Luoto M. Landsat TM images in mapping of semi-natural grasslands and analyzing of habitat pattern in an agricultural landscape in south-west Finland. Fennia International Journal of Geography, 2010, 181: 49-67 [71] Gu C, Ji S, Xi XB, et al. Rice yield estimation based on continuous wavelet transform with multiple growth periods. Frontier Plant Science, 2022, 13: 931789 [72] Ji S, Gu C, Xi XB, et al. Quantitative monitoring of leaf area index in rice based on hyperspectral feature bands and ridge regression algorithm. Remote Sensing, 2022, 14: 2777 [73] Thenkabail PS, Enclona EA, Ashton MS, et al. Accu-racy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 2004, 91: 354-376 [74] Cavender BJ, Meireles JE, Couture JJ, et al. Associations of leaf spectra with genetic and phylogenetic variation in Oaks: Prospects for remote detection of biodiversity. Remote Sensing, 2016, 8: 221 [75] Gholizadeh H, Gamon JA, Helzer CJ, et al. Multitemporal assessment of grassland α- and β-diversity using hyperspectral imaging. Ecological Applications, 2020, 30: 13 [76] 张艺伟, 郭焱培, 唐荣, 等. 高光谱遥感在植物多样性研究中的应用进展与趋势. 遥感学报, 2023, 27(11): 2467-2483 [77] Quegan S, Letoan T, Chave J, et al. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 2019, 227: 44-60 |