[1] Jia PP, Zhang JH, He W, et al. Combination of hyperspectral and machine learning to invert soil electrical conductivity. Remote Sensing, 2022, 14: 2602 [2] Liu QS, Wu ZJ, Cui NB, et al. Estimation of soil moisture using multi-source remote sensing and machine learning algorithms in farming, and of Northern China. Remote Sensing, 2023, 15: 4214 [3] 张俊华, 尚天浩, 陈睿华, 等. 基于光谱FOD与优化指数的银川平原土壤有机质含量反演. 农业机械学报, 2022, 53(11): 379-387 [4] Jia PP, Zhang JH, He W, et al. Inversion of different cultivated soil types' salinity using hyperspectral data and machine learning. Remote Sensing, 2022, 14: 5639 [5] Gholizadeh A, Saberioon M, Ben-Dor E, et al. Monitoring of selected soil contaminants using proximal and remote sensing techniques:Background, state-of-the-art and future perspectives. Critical Reviews in Environmental Science and Technology, 2018, 48: 243-278 [6] Nawar S, Buddenbaum H, Hill J, et al. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 2016, 155: 510-522 [7] Wang XP, Zhang F, Ding JL, et al. Estimation of soil salt content (SSC) in the ebinur lake wetland national nature reserve (ELWNNR), northwest China, based on a bootstrap-BP neural network model and optimal spectral indices. Science of the Total Environment, 2018, 615: 918-930 [8] Li HD, Liang YZ, Xu QS, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta, 2009, 648: 77-84 [9] 王怡婧, 丁启东, 张俊华, 等. 基于无人机高光谱遥感和机器学习的土壤水盐信息反演. 应用生态学报, 2023, 34(11): 3045-3052 [10] 尚天浩, 陈睿华, 张俊华, 等. 基于分数阶微分联合光谱指数估算银川平原土壤有机质含量. 应用生态学报, 2023, 34(3): 717-725 [11] 周洋, 赵小敏, 郭熙. 基于多源辅助变量和随机森林模型的表层土壤全氮分布预测. 土壤学报, 2022, 59(2): 451-460 [12] 马国林, 丁建丽, 张子鹏. 基于土壤协变量与VIS-NIR光谱估算土壤有机质含量的研究. 激光与光电子学进展, 2020, 57(19): 265-275 [13] 高凤杰, 马泉来, 韩文文, 等. 黑土丘陵区小流域土壤有机质空间变异及分布格局. 环境科学, 2016, 37(5): 1915-1922 [14] 唐海涛, 孟祥添, 苏循新, 等. 基于CARS算法的不同类型土壤有机质高光谱预测. 农业工程学报, 2021, 37(2): 105-113 [15] Khalil M, AlSayed A, Liu Y, et al. Machine learning for modeling N2O emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability. Water Research, 2023, 245: 120667 [16] Xu XT, Xiao C, Dong YB, et al. Machine learning algorithms realized soil stoichiometry prediction and its driver identification in intensive agroecosystems across a north-south transect of eastern China. Science of the Total Environment, 2024, 906: 167488 [17] 王思楠, 李瑞平, 吴英杰, 等. 基于环境变量和机器学习的土壤水分反演模型研究. 农业机械学报, 2022, 53(5): 332-341 [18] 顾永昇, 丁建丽, 韩礼敬, 等. 基于多源环境变量的渭-库绿洲土壤颗粒含量预测研究. 土壤, 2023, 55(2): 426-432 [19] 贾壮壮, 谭亚男, 管孝艳, 等. 宁夏盐碱地成因及分区治理措施综述. 灌溉排水学报, 2023, 42(5): 122-134 [20] Zhang JH, Ding QD, Wang YJ, et al. Soil quality assessment and constraint diagnosis of salinized farmland in the yellow river irrigation area in northwestern China. Geoderma Regional, 2023, 34: e00684 [21] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000 [22] 刘焕军, 鲍依临, 徐梦园, 等. 基于SOM和NDVI的黑土区精准管理分区对比. 农业工程学报, 2019, 35(13): 177-183 [23] 纪文君, 史舟, 周清, 等. 几种不同类型土壤的VIS-NIR光谱特性及有机质响应波段. 红外与毫米波学报, 2012, 31(3): 277-282 [24] 李小雨, 贾科利, 魏慧敏, 等. 基于随机森林算法的土壤含盐量预测. 干旱区研究, 2023, 40(8): 1258-1267 [25] Li B, Liu K, Wang M, et al. High-spatiotemporal-resolution dynamic water monitoring using LightGBM model and Sentinel-2 MSI data. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103278 [26] 贾萍萍, 孙媛, 尚天浩, 等. 基于高光谱和Landsat-8 OLI影像的盐渍化土壤水盐估算模型构建. 生态学杂志, 2020, 39(7): 2456-2466 [27] Gu XH, Wang YC, Sun Q, et al. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform. Computers and Electronics in Agriculture, 2019, 167: 105053 [28] Gholizadeh A, Boruvka L, Saberioon M, et al. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil and Water Research, 2015, 10: 218-227 [29] 于雷, 朱亚星, 洪永胜, 等. 高光谱技术结合CARS算法预测土壤水分含量. 农业工程学报, 2016, 32(22): 138-145 [30] 蔡亮红, 丁建丽. 基于高光谱多尺度分解的土壤含水量反演. 激光与光电子学进展, 2018, 55(1): 406-415 [31] 尚天浩, 贾萍萍, 孙媛, 等. 宁夏银北地区盐碱化土壤水分光谱特征及模型拟合精度分析. 水土保持通报, 2020, 40(4): 183-189 [32] Mukhamediev RI, Merembayev T, Kuchin Y, et al. Soil salinity estimation for south Kazakhstan based on SAR Sentinel-1 and Landsat-8,9 OLI data with machine learning models. Remote Sensing, 2023, 15: 4269 [33] 张笑寒, 孟祥添, 唐海涛, 等. 优化光谱输入量的土壤有机质随机森林预测模型. 农业工程学报, 2023, 39(2): 90-99 [34] Qu LL, Lu HZ, Tian ZY, et al. Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas. Catena, 2024, 234: 107572 [35] 刘婷玥, 代晶晶, 赵元艺, 等. 基于LightGBM的盐湖锂浓度遥感反演研究: 以西藏扎布耶盐湖北湖为例. 地质学报, 2021, 95(7): 2249-2256 |