[1] Girardin MP, Hogg EH, Bernier PY, et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Global Change Biology, 2016, 22: 627-643 [2] Williams AP, Allen CD, Macalady AK, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 2013, 3: 292-297 [3] 朱建华, 侯振宏, 张治军, 等. 气候变化与森林生态系统: 影响、脆弱性与适应性. 林业科学, 2007, 43(11): 138-145 [4] D'Orangeville L, Houle D, Duchesne L, et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nature Communications, 2018, 9: 3213 [5] Messaoud Y, Chen HYH. The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS One, 2011, 6(2): e14691 [6] 赵莹, 蔡立新, 靳雨婷, 等. 暖干化加剧东北半干旱地区油松人工林径向生长的水分限制. 应用生态学报, 2021, 32(10): 3459-3467 [7] Lindner M, Maroschek M, Netherer S, et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Mana-gement, 2010, 259: 698-709 [8] Rossi S, Girard MJ, Morin H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Global Change Biology, 2014, 20: 2261-2271 [9] 金敏艳, 李进军, 车宗玺, 等. 祁连山中部祁连圆柏年内径向生长对气候因子的响应. 生态学报, 2020, 40(21): 7699-7708 [10] 徐宁, 王晓春, 张远东, 等. 川西米亚罗林区不同海拔岷江冷杉生长对气候变化的响应. 生态学报, 2013, 33(12): 3742-3751 [11] 石松林, 靳甜甜, 刘国华, 等. 气候变暖抑制西藏拉萨河大果圆柏树木生长. 生态学报, 2018, 38(24): 8964-8972 [12] 管增艳, 金亚宁, 许倩, 等. 川西云杉人工林径向生长对气候变化的响应. 应用与环境生物学报, 2021, 27(3): 560-567 [13] Duan JP, Li L, Fang YJ. Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years. Scientific Reports, 2015, 5: 11725 [14] Liu XD, Cheng ZG, Yan LB, et al. Elevation depen-dency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change, 2009, 68: 164-174 [15] 徐贺年, 王江林, 彭小梅, 等. 青藏高原东北部祁连圆柏径向生长对不同类型干旱的响应. 应用生态学报, 2022, 33(8): 2097-2104 [16] 张贇, 尹定财, 田昆, 等. 滇西北海拔上限大果红杉径向生长对气候变化的响应. 应用生态学报, 2017, 28(9): 2805-2812 [17] 盖学瑞, 于大炮, 王守乐, 等. 树轮-气候“分异问题”形成机制的研究进展. 生态学杂志, 2017, 36(11): 3273-3280 [18] 庞鑫, 张萌, 石松林, 等. 近65年来四川红杉径向生长对气候变暖的响应. 应用与环境生物学报, 2021, 27(3): 568-576 [19] 郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27(2): 354-364 [20] Liang EY, Dawadi B, Pederson N, et al. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 2014, 9: 2453-2465 [21] Pandey S, Cherubini P, Saurer M, et al. Effects of climate change on treeline trees in Sagarmatha (Mt. Eve-rest, Central Himalaya). Journal of Vegetation Science, 2020, 31: 1144-1153 [22] 马云飞, 周光信, 王晓帆, 等. 中国西藏南部乔松林自然更新特征及影响因子. 西部林业科学, 2023, 52(3): 17-24 [23] 陈伟烈, 张经炜, 王金亭, 等. 西藏的松树和松林. 植物学报, 1980, 22(2): 170-176 [24] 段俊鹏, 王峰, 张卫军, 等. 极小种群野生植物密叶红豆杉(Taxus fuana)径向生长对气候的响应. 生态学报, 2022, 42(24): 10276-10287 [25] Aryal PC, Dhamala MK, Gaire NP, et al. Tree-ring climate response of two Larix species from the central Nepal Himalaya. Tropical Ecology, 2020, 61: 215-225 [26] Yadav RR. Long-term hydroclimatic variability in monsoon shadow zone of western Himalaya, India. Climate Dynamics, 2011, 36: 1453-1462 [27] Rai S, Dawadi B, Wang YF, et al. Growth response of Abies spectabilis to climate along an elevation gradient of the Manang valley in the central Himalayas. Journal of Forestry Research, 2020, 31: 2245-2254 [28] 次旦伦珠. 珠穆朗玛峰自然保护区概况. 中国藏学, 1997(1): 3-22 [29] 张玮, 张镱锂, 王兆锋, 等. 珠穆朗玛峰自然保护区植被变化分析. 地理科学进展, 2006, 25(3): 12-21 [30] 赵守栋, 江源, 焦亮, 等. ARSTAN 程序和R语言dplR扩展包进行树轮年表分析的比较研究. 生态学报, 2015, 35(22): 7494-7502 [31] Bunn AG. Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 2010, 28: 251-258 [32] Jump AS, Hunt JM, Peñuelas J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 2006, 12: 2163-2174 [33] 于健, 陈佳佳, 周光, 等. 横断山脉中部川滇冷杉和丽江云杉径向生长对气象因子的响应. 林业科学, 2020, 56(12): 28-38 [34] 薛盼盼, 缪宁, 王东, 等. 川西亚高山林线岷江冷杉和红杉对气候变化的响应. 生态学报, 2022, 42(23): 9701-9711 [35] 岳伟鹏, 陈峰, 袁玉江, 等. 气候变暖背景下云南西北部大果红杉径向生长衰退及其气候驱动因子分析. 生态学报, 2022, 42(6): 2331-2341 [36] 贾龙玉, 管增艳, 常瑞英, 等. 贡嘎山树线上方杜鹃灌木径向生长对气候变化的响应特征. 山地学报, 2021, 39(5): 646-657 [37] Lv LX, Zhang QB. Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. Journal of Plant Ecology, 2012, 5: 147-156 [38] Zhu J, Zhang KX, Wang WS, et al. Low Temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant and Cell Physiology, 2015, 56: 727-736 [39] 潘红丽, 李迈和, 蔡小虎, 等. 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 2009, 18(2): 722-730 [40] 张萌, 石松林, 石春明, 等. 川西高原4种典型针叶树径向生长对气候因子的响应. 生态学杂志, 2021, 40(7): 1947-1957 [41] 张菊梅, 范泽鑫, 付培立, 等. 普达措国家公园四种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32(10): 3548-3556 [42] 乔晶晶, 王童, 潘磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应. 应用生态学报, 2019, 30(7): 2231-2240 [43] Zheng LL, Shi PL, Song MH, et al. Climate sensitivity of high altitude tree growth across the Hindu Kush Hima-laya. Forest Ecology and Management, 2021, 486: 118963 [44] Gautam D, Gaire NP, Subedi M, et al. Moisture, not temperature, in the pre-monsoon influences Pinus wallichiana growth along the altitudinal and aspect gradients in the lower Himalayas of Central Nepal. Forests, 2022, 13, DOI: 10.3390/f13111771 [45] D'Arrigo R, Wilson R, Liepert B, et al. On the ‘Divergence Problem' in northern forests: A review of the tree-ring evidence and possible causes. Global and Plane-tary Change, 2008, 60: 289-305 [46] 于健, 陈佳佳, 孟盛旺, 等. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应. 应用生态学报, 2021, 32(1): 46-56 [47] 史丰鸣, 杨睿, 石松林, 等. 川西南高山松径向生长对气候响应的时空分异特征. 山地学报, 2023, 41(4): 478-492 [48] 郭明明, 张远东, 王晓春, 等. 升温突变对川西马尔康树木生长的影响. 生态学报, 2015, 35(22): 7464-7474 [49] Wang WZ, Jia M, Wang GX, et al. Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau. Forest Ecology and Management, 2017, 402: 135-144 [50] 李静茹, 彭剑峰, 杨柳, 等. 川西高原两种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32(10): 3512-3520 |