[1] Wedepohl KH. The composition of the continental crust. Geochimica et Cosmochimica Acta, 1995, 59: 1217-1232 [2] Haynes RJ. A contemporary overview of silicon availabi-lity in agricultural soils. Journal of Plant Nutrition and Soil Science, 2014, 177: 831-844 [3] Tubaña BS, Heckman JR. Silicon in Soils and Plants. Cham, Switzerland: Springer, 2015 [4] Katz O, Puppe D, Kaczorek D, et al. Silicon in the soil-plant continuum: Intricate feedback mechanisms within ecosystems. Plants, 2021, 10: 652 [5] 王海伦. 硅氮互作对稻稗生物学以及光合特性的影响. 硕士论文. 沈阳: 沈阳农业大学, 2020 [6] 汪秀芳, 陈圣宾, 宋爱琴, 等. 植物在硅生物地球化学循环过程中的作用. 生态学杂志, 2007, 26(4): 595-600 [7] Keller C, Guntzer F, Barboni D, et al. Impact of agriculture on the Si biogeochemical cycle: Input from phytolith studies. Comptes Rendus Geoscience, 2012, 344: 739-746 [8] Pati S, Pal B, Badole S, et al. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Communications in Soil Science and Plant Analysis, 2016, 47: 284-290 [9] 孟赐福. 《中国灌溉稻田起源与演变及相关古今水稻土的质量》评述. 土壤学报, 2018, 55(1): 258-260 [10] 刘丽君, 黄张婷, 孟赐福, 等. 中国不同生态系统土壤硅的研究进展. 土壤学报, 2021, 58(1): 31-41 [11] Yang XM, Song ZL, Van Zwieten L, et al. Spatial distribution of plant-available silicon and its controlling factors in paddy fields of China. Geoderma, 2021, 401: 115215 [12] Garcia WD, Amann T, Hartmann J, et al. Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 2020, 17: 2107-2133 [13] Fuss S, Lamb WF, Callaghan MW, et al. Negative emissions-Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13: 063002 [14] Wang FN, Zhu FF, Liu DZ, et al. Wollastonite powder application increases rice yield and CO2 sequestration in a paddy field in Northeast China. Plant and Soil, 2024, DOI: 10.1007/s11104-024-06570-5 [15] Song ZL, Müller K, Wang HL. Biogeochemical silicon cycle and carbon sequestration in agricultural ecosystems. Earth Science Reviews, 2014, 139: 268-278 [16] Epstein E. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 11-17 [17] Van Soest PJ. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology, 2006, 130: 137-171 [18] Guo FS, Song ZL, Sullivan L, et al. Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Science Bulletin, 2015, 60: 591-597 [19] Song ZL, Mcgrouther K, Wang HL. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth-Science Reviews, 2016, 158: 19-30 [20] Parr JF, Sullivan L, Quirk R. Sugarcane phytoliths: Encapsulation and sequestration of a long-lived carbon fraction. Sugar Tech, 2009, 11: 17-21 [21] Li BL, Song ZL, Li ZM, et al. Phylogenetic variation of phytolith carbon sequestration in bamboos. Scientific Reports, 2014, 4: 4710 [22] Parr J, Sullivan L, Chen B, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species. Global Change Biology, 2010, 16: 2661-2667 [23] Jones LHP, Milne AA, Wadham SM. Studies of silica in the oat plant: II. Distribution of the silica in the plant. Plant and Soil, 1963, 18: 358-371 [24] 孟赐福, 姜培坤, 徐秋芳, 等. 植物生态系统中的植硅体闭蓄有机碳及其在全球土壤碳汇中的重要作用. 浙江农林大学学报, 2013, 30(6): 921-929 [25] Rajendiran S, Coumar MV, Kundu S, et al. Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Current Science, 2012, 103: 911-920 [26] Parr JF, Sullivan LA. Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry, 2005, 37: 117-124 [27] Wilding LP. Radiocarbon dating of biogenetic opal. Science, 1967, 156: 66-67 [28] Song ZL, Wang HL, Strong PJ, et al. Phytolith carbon sequestration in China’s croplands. European Journal of Agronomy, 2014, 53: 10-15 [29] Song A, Ning DF, Fan FL, et al. The potential for carbon bio-sequestration in China’s paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer. Scientific Reports, 2015, 5: 17354 [30] Alexandre A, Meunier JD, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related wea-thering processes. Geochimica et Cosmochimica Acta, 1997, 61: 677-682 [31] 黄莹, 赵牧秋, 王永壮, 等. 长期不同施磷条件下玉米产量、养分吸收及土壤养分平衡状况. 生态学杂志, 2014, 33(3): 694-701 [32] Haque F, Santos RM, Dutta A, et al. Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth. ACS Omega, 2019, 4: 1425-1433 [33] 中华人民共和国农业部. 土壤有效硅的测定: NY/T 1121.15—2006. 北京: 中国标准出版社, 2006 [34] 张威, 刘宁, 吕慧捷, 等. TruSpec CN元素分析仪测定土壤中碳氮方法研究. 分析仪器, 2009(3): 46-49 [35] 中国林业科学研究院林业研究所森林土壤研究室. 森林土壤有机质的测定及碳氮比的计算: LY/T 1237—1999. 北京: 中国标准出版社, 1999 [36] 韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响. 中国农业科学, 2010, 43(8): 1625-1633 [37] 华海霞, 于慧国, 刘德君. 硅钼蓝比色法测定植株中的硅. 现代农业科技, 2013(24): 173-174 [38] Parr JF, Dolic V, Lancaster G, et al. A microwave digestion method for the extraction of phytoliths from herbarium specimens. Review of Palaeobotany and Palynology, 2001, 116: 203-212 [39] Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 1934, 37: 29-38 [40] 李自民, 宋照亮, 姜培坤. 湿地植物植硅体的生物地球化学碳汇: 以西溪湿地为例. 科学通报, 2013, 58(17): 2480-2487 [41] 杨孝民. 我国稻田土壤-植物系统硅循环与植硅体固碳研究. 博士论文. 天津: 天津大学, 2021 [42] Rao GB, Pi PY, Syriac EK. Silicon nutrition in rice: A review. Journal of Pharmacognosy and Phytochemistry, 2017, 6: 390-392 [43] Souri Z, Khanna K, Karimi N, et al. Silicon and plants: Current knowledge and future prospects. Journal of Plant Growth Regulation, 2021, 40: 906-925 [44] Richmond KE, Sussman M. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology, 2003, 6: 268-272 [45] Chaiwong N, Prom-U-Thai C. Significant roles of silicon for improving crop productivity and factors affecting silicon uptake and accumulation in rice: A review. Journal of Soil Science and Plant Nutrition, 2022, 22: 1970-1982 [46] 陈平平. 硅在水稻生活中的作用. 生物学通报, 1998, 33(8): 5-7 [47] Sun X, Liu Q, Tang TT, et al. Silicon fertilizer application promotes phytolith accumulation in rice plants. Frontiers in Plant Science, 2019, 10: 425 [48] 吕烈武, 王朝弼, 吴蔚东, 等. 海南岛典型水稻土硅形态空间分布特征及其有效性的影响因素. 广东农业科学, 2020, 47(3): 81-89 [49] Haynes RJ. Chapter three: Significance and role of Si in crop production. Advances in Agronomy, 2017, 146: 83-166 [50] 国家统计局. 中国年鉴. 北京: 中国统计出版社, 2022 [51] Parr JF, Sullivan LA. Phytolith occluded carbon and silica variability in wheat cultivars. Plant and Soil, 2011, 342: 165-171 [52] Song ZL, Zhao SL, Zhang YZ, et al. Plant impact on CO2 consumption by silicate weathering: The role of bamboo. The Botanical Review, 2011, 77: 208-213 [53] Li ZM, Song ZL, Parr JF, et al. Occluded C in rice phytoliths: Implications to biogeochemical carbon sequestration. Plant and Soil, 2013, 370: 615-623 [54] 何珊琼, 孟赐福, 黄张婷, 等. 土壤植硅体碳稳定性的研究进展与展望. 浙江农林大学学报, 2016, 33(3): 506-515 [55] Fishkis O, Ingwersen J, Lamers M, et al. Phytolith transport in soil: A field study using fluorescent labelling. Geoderma, 2010, 157: 27-36 [56] Fang JY, Yang YH, Ma WH, et al. Ecosystem carbon stocks and their changes in China’s grasslands. Science China: Life Sciences, 2010, 53: 757-765 [57] Dominique Meunier J, Colin F, Alarcon C. Biogenic silica storage in soils. Geology, 1999, 27: 835-838 [58] Verbruggen E, Struyf E, Vicca S. Can arbuscular mycorrhizal fungi speed up carbon sequestration by enhanced weathering? Plants, People, Planet, 2021, 3: 445-453 [59] Vicca S, Goll DS, Hagens M, et al. Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes? Global Change Biology, 2022, 28: 711-726 [60] Guo FX, Sun HW, Yang J, et al. Improving food secu-rity and farmland carbon sequestration in China through enhanced rock weathering: Field evidence and potential assessment in different humid regions. Science of the Total Environment, 2023, 903: 166118 [61] Kantola IB, Masters MD, Beerling DJ, et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biology Letters, 2017, 13: 20160714 [62] 杨卫东, 曾联波, 李想. 碳汇效应及其影响因素研究进展. 地球科学进展, 2023, 38(2): 151-167 [63] Renforth P, Henderson G. Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 2017, 55: 636-674 [64] Yan YX, Dong XH, Li RS, et al. Wollastonite addition stimulates soil organic carbon mineralization: Evidences from 12 land-use types in subtropical China. Catena, 2023, 225: 107031 [65] Rowley MC, Grand S, Verrecchia ÉP. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 2018, 137: 27-49 [66] 耿增超, 戴伟. 土壤学. 北京: 科学出版社, 2011 [67] Kelland ME, Wade PW, Lewis AL, et al. Increased yield and CO2 sequestration potential with the C4 cereal sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Global Change Biology, 2020, 26: 3658-3676 [68] Ten Berge HFM, Van Der Meer HG, Steenhuizen JW, et al. Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): A pot experiment. PLoS One, 2012, 7(8): e42098 [69] 高洪军, 彭畅, 张秀芝, 等. 秸秆还田量对黑土区土壤及团聚体有机碳变化特征和固碳效率的影响. 中国农业科学, 2020, 53(22): 4613-4622 [70] 刘安凯, 史登林, 王小利, 等. 秸秆和生物炭还田对稻田土壤有机碳矿化和水稻产质量的影响. 山地农业生物学报, 2021, 40(4): 38-45 [71] 吴家梅, 纪雄辉, 彭华, 等. 南方双季稻田稻草还田的碳汇效应. 应用生态学报, 2011, 22(12): 3196-3202 [72] 马子钰, 马文林. 施肥对中国农田土壤固碳影响效应研究. 土壤, 2022, 54(5): 905-911 |