欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (10): 2897-2906.doi: 10.13287/j.1001-9332.202410.031

• • 上一篇    下一篇

种子载体固定化微生物对油菜生长和石油烃污染土壤修复的影响

周艳秋1,2, 李法云1,2*, 王玮1,3, 周纯亮1,3, 蒋镕鞠1,2   

  1. 1上海应用技术大学生态技术与工程学院, 上海 201418;
    2美丽中国与生态文明研究院(上海高校智库), 上海 201418;
    3上海城市路域生态工程技术研究中心, 上海 201418
  • 收稿日期:2024-03-04 接受日期:2024-07-16 出版日期:2024-10-18 发布日期:2025-04-18
  • 通讯作者: * E-mail: lnecology@163.com
  • 作者简介:周艳秋, 女, 1998年生, 硕士研究生。主要从事环境生态修复技术研究。E-mail: zhouyanqiu2021@163.com
  • 基金资助:
    国家重点研发计划项目(2020YFC1808802)和上海市地方能力建设项目(20090503200)

Effects of seed carrier-immobilized microorganisms on the growth of rapeseed and the remediation of petroleum hydrocarbon contaminated soil

ZHOU Yanqiu1,2, LI Fayun1,2*, WANG Wei1,3, ZHOU Chunliang1,3, JIANG Rongju1,2   

  1. 1School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
    2Institute of Beautiful China and Ecological Civilization, University Think Tank of Shanghai Muni-cipality, Shanghai 201418, China;
    3Shanghai Engineering Research Center of Urban Ecological Technology, Shanghai 201418, China
  • Received:2024-03-04 Accepted:2024-07-16 Online:2024-10-18 Published:2025-04-18

摘要: 土壤中的石油烃污染物难以生物降解,影响植物生长及土壤微生物代谢活性和群落结构,种子载体固定化微生物可以协同发挥植物和微生物对石油烃污染土壤的修复作用。采用种子包衣(以硅藻土与膨润土混合物为填充剂)和微生物固定化方法研制了油菜种子载体固定化微生物材料,设置空白对照组(CK,种子与微生物均不添加)、裸种油菜(T1)、包衣硅藻土与膨润土的油菜种子(T2)、添加游离铜绿假单胞菌(T3)、包衣硅藻土与膨润土的油菜种子+游离铜绿假单胞菌(T4)、包衣硅藻土与膨润土的油菜种子固定化铜绿假单胞菌(T5)进行盆栽试验,测定油菜生长、根际微生物群落结构及石油烃去除效果。结果表明: 1)T1、T2、T4和T5处理间种子发芽率无显著差异;与T1相比,T4与T5处理油菜的叶长、根长、生物量及可溶性蛋白质含量显著增加,但T2处理则没有显著变化;T2、T4、T5处理油菜的叶宽、茎长、叶绿素含量及超氧化物歧化酶活性显著提高,而丙二醛含量则显著降低。2)与CK相比,T1、T2、T3、T4、T5处理组对石油烃的去除率分别提高了0.8、1.6、0.5、1.8、2.2倍,T5处理石油烃去除率最高,达54.0%。各处理土壤脱氢酶活性均显著增高,且与石油烃去除率呈显著正相关(r=0.893)。3)高通量测序结果发现,T5处理土壤微生物α多样性最高,绿弯菌门和酸杆菌门丰度均大于其他处理。综上,种子载体固定化微生物处理通过调控植物生长、改变微生物群落结构、提高土壤酶生物学活性,提高了石油烃的去除率,这为协同发挥植物与微生物联合修复石油烃污染土壤提供了一种环境友好型新材料。

关键词: 石油烃, 种子包衣, 固定化微生物, 土壤酶活性, 微生物多样性

Abstract: Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization. A pot experiment was conducted with the following treatments: control (CK, neither seeds nor microorganisms added), bare rapeseed (T1), rapeseed coated with diatomaceous earth and bentonite (T2), free-living Pseudomonas aeruginosa added (T3), rapeseed coated with diatomaceous earth and bentonite plus free-living P. aeruginosa (T4), and rapeseed coated with diatomaceous earth and bentonite immobilized with P. aeruginosa (T5). We measured rape seed growth, rhizosphere microbial community structure, and petroleum hydrocarbon removal efficiency. The results showed that 1) There were no significant difference in seed germination rate among T1, T2, T4, and T5 treatments. Compared to T1, leaf length, root length, biomass, and soluble protein content of rape seed significantly increased in T4 and T5 treatments, while T2 treatment showed no significant effect. Leaf width, stem length, chlorophyll content, and superoxide dismutase activity of rape seed in T2, T4, and T5 treatments were significantly higher than T1, while malondialdehyde content was signi-ficantly lower. 2) Compared to CK, the removal rate of petroleum hydrocarbon in the T1, T2, T3, T4, and T5 treatments increased by 0.8, 1.6, 0.5, 1.8, and 2.2 times, respectively. The T5 treatment achieved the highest petro-leum hydrocarbon removal rate of 54.0%. Soil dehydrogenase activity in all treatments increased significantly, with a positive correlation with the petroleum hydrocarbon removal rate (r=0.893). 3) The T5 treatment had the highest soil microbial α diversity and the abundances of Chloroflexi and Acidobacteria. In conclusion, seed carriers with immobilized microorganisms could regulate plant growth, modify the structures of microbial communities, enhance the biological activity of soil enzymes, thereby improving petroleum hydrocarbon removal efficiency. This provides a novel environmentally friendly approach for the joint remediation of petroleum hydrocarbon-polluted soil by plants and microorganisms.

Key words: petroleum hydrocarbons, seed coating, immobilized microorganism, soil enzyme activity, microbial diversity