[1] 刘绪军, 景国臣, 杨亚娟, 等. 冻融交替作用对表层黑土结构的影响. 中国水土保持科学, 2015, 13(1): 42-46 [2] Harris JA, Birch P. Soil microbial activity in opencast coal mine restoration. Soil Use and Management, 1989, 5: 155-160 [3] Leff JW, Jones SE, Prober SM, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 10967-10972 [4] Oksana C, Gerlinde BDD, Martine PDV. Soil microbiota as game-changers in restoration of degraded lands. Science, 2022, 375: eabe0725 [5] 梁文举, 董元华, 李英滨, 等. 土壤健康的生物学表征与调控. 应用生态学报, 2021, 32(2): 719-728 [6] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34(8): 979-988 [7] 王志明, 朱培立, 黄东迈, 等. 水旱轮作条件下土壤有机碳的分解及土壤微生物量碳的周转特征. 江苏农业学报, 2003, 19(1): 33-36 [8] 韩露, 万忠梅, 孙赫阳. 冻融作用对土壤物理、化学和生物学性质影响的研究进展. 土壤通报, 2018, 49(3): 736-742 [9] 孙嘉鸿. 冻融循环作用对泥炭沼泽土壤碳排放的影响及其微生物机制. 硕士论文. 长春: 东北师范大学, 2022 [10] 魏丽红. 冻融交替对黑土土壤有机质及氮钾养分的影响. 硕士论文. 长春: 吉林农业大学, 2004 [11] Allison VJ, Condron LM, Peltzer DA, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 2007, 39: 1770-1781 [12] Demisie W, Liu ZY, Zhang MK. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 2014, 121: 214-221 [13] Chen H, Li DJ, Xiao KC, et al. Soil microbial processes and resource limitation in karst and non-karst forests. Functional Ecology, 2018, 32: 1400-1409 [14] Deng L, Peng CH, Huang CB, et al. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma, 2019, 353: 188-200 [15] 莫帅豪, 王雪松, 郑粉莉, 等. 典型黑土区坡面侵蚀-沉积对土壤微生物养分限制的影响. 中国环境科学, 2023, 43(6): 3023-3033 [16] 宗宁, 石培礼, 赵广帅, 等. 降水量变化对藏北高寒草地养分限制的影响. 植物生态学报, 2021, 45(5): 444-455 [17] Du T, Zhang L, Chen YL, et al. Decreased snow depth inhibits litter decomposition via changes in litter micro-bial biomass and enzyme activity. Science of the Total Environment, 2024, 921: 171078 [18] Fu Q, Yan JW, Li H, et al. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles. Geoderma, 2019, 353: 459-467 [19] 鲁博权, 臧淑英, 孙丽. 冻融作用对大兴安岭典型森林土壤活性有机碳和氮矿化的影响. 环境科学学报, 2019, 39(5): 1664-1672 [20] 王世佳, 郭亚芬, 崔晓阳. 大兴安岭地区林下土壤酶活性对冻融交替的响应. 应用生态学报, 2023, 34(5): 1211-1217 [21] 刘志强, 杨明义, 刘普灵, 等. 137Cs示踪技术背景值研究进展与建议. 核农学报, 2008, 22(6): 913-917, 922 [22] 莫帅豪. 典型东北黑土区农地侵蚀对土壤质量的影响评价. 硕士论文. 杨凌: 西北农林科技大学, 2023 [23] 高雨秋, 戴晓琴, 王建雷, 等. 亚热带人工林下植被根际土壤酶化学计量特征. 植物生态学报, 2019, 43(3): 258-272 [24] Zhang GH, Ding WF, Pu J, et al. Effects of moss-dominated biocrusts on soil detachment by overland flow in the Three Gorges Reservoir Area of China. Journal of Mountain Science, 2020, 17: 2418-2431 [25] 吴金水, 林启美, 黄巧云. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006: 54-140 [26] Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34: 1309-1315 [27] 王雪松, 郑粉莉, 王婧, 等. 气候变化对谷子生育期土壤碳氮磷转化相关酶活性的影响. 农业环境科学学报, 2021, 40(7): 1591-1600 [28] Zhang XB, Higgitt DL, Walling DE, et al. A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrological Sciences Journal, 1990, 35: 243-252 [29] Moorhead DL, Rinkes ZL, Sinsabaugh RL, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Frontiers in Microbiology, 2013, 4: 223 [30] Sterner RW, Elser JJ, Peter V. Ecological Stoichiome-try: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press, 2002: 225-226 [31] 中华人民共和国水利部. 土壤侵蚀分类分级标准: SL 190—2007. 北京: 中国水利水电出版社, 2008: 8-9 [32] 王洋, 刘景双, 王全英. 冻融作用对土壤团聚体及有机碳组分的影响. 生态环境学报, 2013, 22(7): 1269-1274 [33] Chenu C, Plante AF. Clay-sized organo-mineral complexes in a cultivation chronosequence: Revisiting the concept of the ‘primary organo-mineral complex’. European Journal of Soil Science, 2006, 57: 596-607 [34] Gao DC, Bai E, Yang Y, et al. A global meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling. Soil Biology and Biochemistry, 2021, 159:108283 [35] 周旺明, 王金达, 刘景双, 等. 冻融对湿地土壤可溶性碳、氮和氮矿化的影响. 生态与农村环境学报, 2008, 24(3): 1-6 [36] 邵明安, 安兴昌. 坡面土壤养分与降雨、径流的相互作用机理及模型. 世界科技研究与发展, 2001, 23(2): 7-12 [37] 谭娟, 范昊明, 许秀泉, 等. 融雪与降雨侵蚀条件下水土保持措施因子值对比研究. 水土保持研究, 2017, 24(3): 29-32, 38 [38] Feng XJ, Nielsen LL, Simpson MJ. Responses of soil organic matter and microorganisms to freeze-thaw cycles. Soil Biology and Biochemistry, 2007, 39: 2027-2037 [39] Ren YB, Ren NQ. Effect of freeze-thaw action on phosphorus adsorption and desorption in forest wetland soils at high latitudes. Applied Mechanics and Materials, 2013, 316-317: 487-492 [40] Walker VK, Palmer GR, Voordouw G. Freeze-thaw tole-rance and clues to the winter survival of a soil community. Applied and Environmental Microbiology, 2006, 72: 1784-1792 [41] 米琦, 王毅, 秦小静, 等. 青藏高原高寒草甸不同围栏年限土壤酶化学计量特征. 草地学报, 2021, 29(1): 33-41 [42] Burns RG, DeForest JL, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234 [43] Olander LP, Vitousek PM. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 2000, 49: 175-190 [44] Hardy JP, Groffman PM, Fitzhugh RD, et al. Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry, 2001, 56: 151-174 [45] Zhou XQ, Chen CR, Wang YF, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of the Total Environment, 2013, 444: 552-558 [46] Sinsabaugh RL, Hill BH, Shah JJF. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-U117 [47] Cui YX, Wang X, Zhang XC, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry, 2020, 147: 107814 [48] Wang L, Zheng FL, Liu G, et al. Seasonal changes of soil erosion and its spatial distribution on a long gentle hillslope in the Chinese Mollisol region. International Soil and Water Conservation Research, 2021, 9: 394-404 [49] He YX, Zhang FB, Yang MY, et al. Insights from size fractions to interpret the erosion-driven variations in soil organic carbon on black soil sloping farmland, Northeast China. Agriculture, Ecosystems and Environment, 2023, 343: 108283 [50] Fissore C, Dalzell BJ, Berhe AA, et al. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 2017, 149: 140-149 [51] Zhang JH, Wang Y, Li FC. Soil organic carbon and nitrogen losses due to soil erosion and cropping in a sloping terrace landscape. Soil Research, 2015, 53: 87-96 [52] Li T, Zhang HC, Wang XY, et al. Soil erosion affects variations of soil organic carbon and soil respiration along a slope in Northeast China. Ecological Processes, 2019, 8: 28 [53] 张冠华, 易亮, 孙宝洋, 等. 亚热带苔藓结皮对土壤-微生物-胞外酶化学计量特征的影响. 应用生态学报, 2022, 33(7): 1791-1800 [54] Zhou ZH, Wang CK. Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems. Biogeosciences, 2015, 12: 6751-6760 [55] 吴秀芝, 阎欣, 王波, 等. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 2018, 42(10): 1022-1032 [56] Cui YX, Fang LC, Guo XB, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Pla-teau, China. Soil Biology and Biochemistry, 2018, 116: 11-21 |