欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (1): 178-186.doi: 10.13287/j.1001-9332.202412.009

• 研究报告 • 上一篇    下一篇

夏玉米高温热害的演变及其对环流指数的响应

黄进, 张方敏*   

  1. 南京信息工程大学, 气象灾害预报预警与评估协同创新中心/生态与应用气象学院, 南京 210044
  • 收稿日期:2024-07-01 修回日期:2024-10-13 出版日期:2025-01-18 发布日期:2025-07-18
  • 通讯作者: *E-mail: nfuecology@aliyun.com
  • 作者简介:黄 进, 男, 1983年生, 博士。主要从事农业气象灾害诊断与评估研究。E-mail: hjtyforlove@aliyun.com
  • 基金资助:
    江苏省碳达峰碳中和科技创新专项(BE2023400)

Changes of heat stress of summer maize and their responses to circulation index

HUANG Jin, ZHANG Fangmin*   

  1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2024-07-01 Revised:2024-10-13 Online:2025-01-18 Published:2025-07-18

摘要: 辨析高温热害与大尺度环流指数(LSCI)的可能联系有利于应对气候异常对夏玉米种植的影响。基于1980—2019年间河北、河南、山东、安徽、江苏的逐日最高气温数据及省级夏玉米单产记录,通过一阶差分处理、相关分析、回归分析评估了9种极端温度指数刻画生育期高温热害的适用性;基于主成分分析识别了关键致灾因子的时空模态,进一步通过时滞相关性分析了其对环流指数的响应特征。结果表明: 当高温阈值设置为32 ℃时,高温期的最大累积高温度日作为关键致灾因子能够更好地评估研究区高温热害的时空特征;高温热害的致灾强度呈现出明显的由南向北减少的空间分布格局;相比于其他子区域,研究区中部高温热害的增强趋势更显著;前期LSCI构建的线性回归模型对高温热害有一定模拟能力;太平洋暖池指数被识别为多个子区域高温热害的首要前兆信号。

关键词: 高温热害, 大尺度环流指数, 夏玉米, 主成分分析

Abstract: Identifying possible connections between heat stress and large-scale circulation indices (LSCI) is beneficial for mitigating the impacts of climate anomalies on summer maize cultivation. Based on daily maximum tempe-rature data and summer maize yield records from 1980 to 2019 in Hebei, Henan, Shandong, Anhui, and Jiangsu, we evaluated the applicability of nine types of extreme temperature indices on describing heat stress during growth period through first-order difference processing, correlation analysis and regression analysis. We identified the spatio-temporal modes of key disaster-causing factors through principal component analysis, and further analyzed their responses to the circulation indices using time-lag correlation. The results showed that the spatiotemporal characte-ristics of heat stress could be better evaluated with the maximum cumulative heat degree-day (MHDD) of high-temperature spell as a key disaster-causing factor when the high temperature threshold was set as 32 ℃. There was a significant spatial distribution pattern of disaster intensity of heat stress, decreasing from south to north. The strengthening trend of heat stress in the central study area was more significant than other sub-regions. The multi-linear model based on previous LSCI data could simulate heat stress. The Pacific warm pool index was the primary precursor signal of heat stress in multiple sub-regions.

Key words: heat stress, large-scale circulation index, summer maize, principal component analysis