[1] 姜凤岐, 于占源, 曾德慧, 等. 三北防护林呼唤生态文明. 防护林科技, 2013(5): 1-3 [2] Li C, Zhang S, Cui M, et al. Improved vegetation ecological quality of the three-north shelterbelt project region of China during 2000-2020 as evidenced from multiple remotely sensed indicators. Remote Sensing, 2022, 14: 5708 [3] 张英团, 邹翠翠, 陈俊松, 等. 三北防护林工程科学绿化策略研究. 中国林业经济, 2023(4): 27-32 [4] Zhu L, Cooper DJ, Yang J, et al. Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China. Dendrochronologia, 2018, 50: 52-63 [5] 姜凤岐, 于占源, 曾德慧, 等. 气候变化对三北防护林的影响与应对策略. 生态学杂志, 2009, 28(9): 1702-1705 [6] 孙凤华, 杨素英, 陈鹏狮. 东北地区近44年的气候暖干化趋势分析及可能影响. 生态学杂志, 2005, 24(7): 751-755 [7] 刘亚玲, 信忠保, 李宗善, 等. 近40年河北坝上地区杨树人工林径向生长对气候变化的响应差异. 生态学报, 2020, 40(24): 9108-9119 [8] 赵莹, 蔡立新, 靳雨婷, 等. 暖干化加剧东北半干旱地区油松人工林径向生长的水分限制. 应用生态学报, 2021, 32(10): 3459-3467 [9] 李露露, 李丽光, 陈振举, 等. 辽宁省人工林樟子松径向生长对水热梯度变化的响应. 生态学报, 2015, 35(13): 4508-4517 [10] Li M, Yang L, Cao Y, et al. Aging Mongolian pine plantations face high risks of drought-induced growth decline: Evidence from both individual tree and forest stand measurements. Journal of Forestry Research, 2024, 35: 38 [11] Song L, Zhu J, Zhang T, et al. Higher canopy trans-piration rates induced dieback in poplar (Populus× xiaozhuanica) plantations in a semiarid sandy region of Northeast China. Agricultural Water Management, 2021, 243: 106414 [12] Briffa KR, Osborn TJ, Schweingruber FH. Large-scale temperature inferences from tree ring: A review. Global and Planetary Change, 2004, 40: 11-26 [13] 李雅婧, 李子静, 孙守家, 等. 健康与衰退樟子松生长和解剖特征差异及其与气象因子的关系[EB/OL]. (2024-06-19)[2024-08-03]. 生态学杂志, https://link.cnki.net/urlid/21.1148.Q.20240618.1801.006 [14] 胡冬青, 傅会利, 张东旭. 通辽市科尔沁区土壤改良与培肥技术. 现代农业, 2012(10): 27 [15] Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 1983, 43: 69-78 [16] Bunn AG. A dendrochronology program library in R (dplR). Dendrochronologia, 2008, 26: 115-124 [17] Jump AS, Hunt JM, Penuelas J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 2006, 12: 2163-2174 [18] Fritts HC. Tree Rings and Climate. Caldwell, NJ, USA: The Blackburn Press, 1976 [19] Li J, Xie Y, Camarero JJ, et al. Optimistic growth of marginal region plantations under climate warming: Assessing divergent drought resilience. Global Change Bio-logy, 2024, 30: e17459 [20] Harris I, Osborn TJ, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 2020, 7: 109 [21] Schrier GVD, Barichivich J, Harris I, et al. Monitoring global drought using the self-calibrating Palmer drought severity index. Bulletin of the American Meteorological Society, 2015, DOI: http://dx.doi.org/10.1175/2015BAMS-StateoftheClimate.1 [22] Cai Y, Guan K, Lobell D, et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology, 2019, 274: 144-159 [23] Lloret F, Keeling EG, Sala A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120: 1909-1920 [24] Feeley KJ, Wright SJ, Nur Supardi MN, et al. Decelera-ting growth in tropical forest trees. Ecology Letters, 2007, 10: 461-469 [25] Sun SJ, Zhang J, Yin C, et al. Stable isotopes reveal differences in climate sensitivity and physiological responses between dieback and healthy trees in a shelter forest. Agricultural and Forest Meteorology, 2022, 325: 109090 [26] 吴喆虹, 王文志, 罗玲卓, 等. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应特征. 生态学报, 2024, 44(23): 1-9 [27] 侯帅, 徐国保, 王波, 等. 祁连山东部青海云杉死亡和存活个体径向生长对气候变化的响应差异. 生态学报, 2024, 44(11): 4708-1718 [28] 梁非凡, 朱清科, 王露露, 等. 陕北黄土区油松径向生长对气候因子的响应. 西北农林科技大学学报:自然科学版, 2015, 43(5): 33-41 [29] 熊千志, 杜恩在, 薛峰, 等. 塞罕坝地区人工针叶林径向生长对水热条件的响应. 生态学报, 2022, 42(13): 5371-5380 [30] Zhao Y, Wang L. Coordination of available soil water content and root distribution modifies water source apportionment of the shrub plant Caragana korshinskii. Science of the Total Environment, 2023, 900: 165893 [31] 路明, 勾晓华, 张军周, 等. 祁连山东部祁连圆柏(Sabina przewalskii)径向生长动态及其对环境因子的响应. 第四纪研究, 2015, 35(5): 1201-1208 [32] Major JE, Johnsen KH. Shoot water relations of mature black spruce families displaying a genotype× environment interaction in growth rate. Ⅲ. Diurnal patterns as influenced by vapor pressure deficit and internal water status. Tree Physiology, 2001, 21: 579-587 [33] Delucia EH, Maherali H, Carey EV. Climate-driven changes in biomass allocation in pines. Global Change Biology, 2000, 6: 587-593 [34] Xu C, Liu H, Anenkhonov OA, et al. Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia. Global Change Biology, 2017, 23: 2370-2382 [35] Zimmermann MH. Xylem Structure and the Ascent of Sap. Berlin: Springer, 2013 [36] 韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制. 应用生态学报, 2018, 29(7): 2433-2444 [37] Li MY, Fang LD, Duan CY, et al. Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China. Forest Ecology and Management, 2020, 461: 117980 [38] 孙守家, 李春友, 何春霞, 等. 基于树轮稳定碳同位素的张北杨树防护林退化原因解析. 应用生态学报, 2017, 28(7): 2119-2127 [39] 张子航, 王恒, 贾建恒, 等. 不同密度华北落叶松径向生长对干旱事件的响应. 应用生态学报, 2024, 35(5): 1169-1176 [40] Yue G, Zhao H, Zhang T, et al. Sap flow characteristics of growing poplar seedlings in Horqin sand land. Journal of Desert Research, 2009, 29: 674-679 |