[1] Bond WJ, Midgley JJ. Ecology of sprouting in woody plants: The persistence niche. Trends in Ecology and Evolution, 2001, 16: 45-51 [2] Paula S, Pausas JG. Leaf traits and resprouting ability in the Mediterranean Basin. Functional Ecology, 2006, 20: 941-947 [3] 陈沐, 曹敏, 林露湘. 木本植物萌生更新研究进展. 生态学杂志, 2007, 26(7): 1114-1118 [4] Del Tredici P. Sprouting in temperate trees: A morphological and ecological review. Botanical Review, 2001, 67: 121-140 [5] Poorter L, Kitajima K, Mercado P, et al. Resprouting as a persistence strategy of tropical forest trees: Relations with carbohydrate storage and shade tolerance. Ecology, 2010, 91: 2613-2627 [6] Wang XH, Kent M, Fang XF. Evergreen broad-leaved forest in eastern China: Its ecology and conservation and the importance of resprouting in forest restoration. Forest Ecology and Management, 2007, 245: 76-87 [7] Tanentzap AJ, Mountford EP, Cooke AS, et al. The more stems the merrier: Advantages of multi-stemmed architecture for the demography of understory trees in temperate broadleaf woodland. Journal of Ecology, 2012, 100: 171-183 [8] Clarke PJ, Lawes MJ, Midgley JJ, et al. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist, 2013, 197: 19-35 [9] Clarke PJ, Knox KJE. Trade-offs in resource allocation that favour resprouting affect the competitive ability of woody seedlings in grassy communities. Journal of Eco-logy, 2009, 97: 1374-1382 [10] Vieira DLM, Scariot A. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology, 2006, 14: 11-20 [11] 苏建荣, 刘万德, 张志钧, 等. 云南中南部季风常绿阔叶林恢复生态系统萌生特征. 生态学报, 2012, 32(3): 805-814 [12] Vesk PA, Westoby M. Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology, 2004, 92: 310-320 [13] Zeppel MJ, Harrison SP, Adams HD, et al. Drought and resprouting plants. New Phytologist, 2015, 206: 583-589 [14] Heineman KD, Turner BL, Dalling JW. Nutrient availability predicts multiple stem frequency, an indicator of species resprouting capacity in tropical forests. Journal of Ecology, 2021, 109: 1633-1648 [15] Rao M, Ye D, Chen J, et al. Multi-stemming strategies of Quercus glauca in an evergreen broad-leaved forest: When and where. Journal of Plant Ecology, 2020, 13: 738-743 [16] Moreira B, Tormo J, Pausas JG. To resprout or not to resprout: Factors driving intraspecific variability in resprouting. Oikos, 2012, 121: 1577-1584 [17] Bellingham PJ, Sparrow AD. Multi-stemmed trees in montane rain forests: Their frequency and demography in relation to elevation, soil nutrients and disturbance. Journal of Ecology, 2009, 97: 472-483 [18] Paciorek CJ, Condit R, Hubbell SP, et al. The demographics of resprouting in tree and shrub species of a moist tropical forest. Journal of Ecology, 2000, 88: 765-777 [19] Ye J, Hao ZQ, Wang XG, et al. Local-scale drivers of multi-stemmed tree formation in Acer, in a temperate forest of Northeast China. Chinese Science Bulletin, 2014, 59: 320-325 [20] Gartner BL. Breakage and regrowth of Piper species in rain forest understory. Biotropica, 1989, 21: 303-307 [21] Kammesheidt L. The role of tree sprouts in the restoration of stand structure and species diversity in tropical moist forest after slash- and -burn agriculture in Eastern Paraguay. Plant Ecology, 1998, 139: 155-165 [22] Peter AV. Plant size and resprouting ability: Trading tolerance and avoidance of damage? Journal of Ecology, 2006, 94: 1027-1034 [23] Clark DB, Clark DA. The impact of physical damage on canopy tree regeneration in tropical rainforest. Journal of Ecology, 1991, 79: 447-457 [24] Mwavu EN, Witkowski ETF. Sprouting of woody species following cutting and tree-fall in a lowland semi-deciduous tropical rainforest, North-Western Uganda. Forest Ecology and Management, 2008, 255: 982-992 [25] Busby PE, Vitousek P, Dirzo R. Prevalence of tee regeneration by sprouting and seeding along a rainfall gradient in Hawai’i. Biotropica, 2010, 42: 80-86 [26] 池秀莲, 王庆刚, 郭强, 等. 古田山常绿阔叶林不同演替群落的萌生特征. 生物多样性, 2019, 27(1): 24-32 [27] 刘海波, 王庆刚, 路俊盟, 等. 八大公山常绿落叶阔叶混交林根萌能力. 科学通报, 2014, 35(59): 3491-3499 [28] 彭新华, 杨绕琼, 尹云丽, 等. 滇西北白马雪山高山松(Pinus densata)径向生长对气候因子的响应. 生态学报, 2023, 43(21): 8884-8893 [29] 张慧, 付培立, 林友兴, 等. 滇西北白马雪山长苞冷杉和大果红杉年内径向生长动态及其对环境因子的响应. 应用生态学报, 2022, 33(11): 2881-2888 [30] 李宏伟. 白马雪山国家级自然保护区. 昆明: 云南民族出版社, 2003 [31] 叶铎, 董瑞瑞, 米湘成, 等. 古田山常绿阔叶林萌生特征及其与群落物种多样性的关系. 生物多样性, 2017, 25(4): 393-400 [32] 郭屹立, 王斌, 向悟生, 等. 弄岗北热带喀斯特季节性雨林15 hm2样地木本植物萌生特征. 生态学杂志, 2015, 34(4): 955-961 [33] 王帅朋, 姚成亮, 周紫羽, 等. 河南白云山温带落叶阔叶林萌生特征及萌生个体空间分布格局. 植物科学学报, 2021, 39(1): 32-41 [34] 何永涛, 曹敏, 唐勇, 等. 云南省哀牢山中山湿性常绿阔叶林萌生现象的初步研究. 武汉植物学研究, 2000, 18(6): 523-527 [35] 王中清, 许涵, 林明献, 等. 海南尖峰岭60 hm2大样地萌生植物数量特征. 林业科学研究, 2019, 32(2): 17-24 [36] 叶铎, 钱海源, 王璐瑶, 等. 钱江源国家公园古田山常绿阔叶林木本植物的萌生更新特征. 生态学报, 2018, 38(10): 3562-3568 [37] Kubo M, Sakio H, Shimano K, et al. Age structure and dynamics of Cercidiphyllum japonicum sprouts based on growth ring analysis. Forest Ecology and Management, 2005, 213: 253-260 [38] Colwell R, Lees CD. The mid-domain effect: Geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 2000, 15: 70-76 |