欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (5): 1469-1477.doi: 10.13287/j.1001-9332.202505.029

• • 上一篇    下一篇

锡林郭勒草原总初级生产力对复合干热事件的响应

张媛1,2, 郭恩亮1,2*, 王永芳1,2,3, 康尧1,2, 乌吉斯古冷1,2   

  1. 1内蒙古师范大学地理科学学院, 呼和浩特 010022;
    2内蒙古自治区蒙古高原地理研究重点实验室, 呼和浩特 010022;
    3蒙古高原气候变化与区域响应高校重点实验室, 呼和浩特 010022
  • 收稿日期:2024-11-21 修回日期:2025-03-19 出版日期:2025-05-18 发布日期:2025-11-18
  • 通讯作者: *E-mail: guoel1988@imnu.edu.cn
  • 作者简介:张 媛, 女, 2000年生, 硕士研究生。主要从事极端复合事件及生态遥感研究。E-mail: 771165705@qq.com
  • 基金资助:
    国家自然科学基金地区项目(42261019)、一流学科科研专项项目(YLXKZX-NSD-027)、内蒙古自治区自然科学基金面上项目(2024MS04002)和内蒙古自治区高等学校青年科技英才支持计划项目(NJYT22028)

Response of gross primary productivity to compound dry-hot events in Xilingol Grassland, China

ZHANG Yuan1,2, GUO Enliang1,2*, WANG Yongfang1,2,3, KANG Yao1,2, WU Jisiguleng1,2   

  1. 1College of Geographical Sciences, Inner Mongolia Normal University, Hohhot 010022, China;
    2Key Laboratory of Geographic Research on the Mongolian Plateau, Inner Mongolia Autonomous Region, Hohhot 010022, China;
    3Provincial Key Laboratory of Mongolian Plateau's Climate System, Hohhot 010022, China
  • Received:2024-11-21 Revised:2025-03-19 Online:2025-05-18 Published:2025-11-18

摘要: 为了探讨复合干热事件对锡林郭勒草原植被总初级生产力(GPP)的影响,本研究基于2000—2023年植被生长季(5—10月)MODIS GPP和TerraClimate潜在蒸散量、最高温度与降水量数据集,通过标准化温度指数(STI)和标准化降水蒸散指数(SPEI)构建标准化复合干热指数(SCDHI)。在此基础上,运用Theil-Sen趋势分析及Mann-Kendall非参数检验法分析研究区SCDHI和GPP的时空演变特征,并采用偏相关分析和岭回归分析方法,定量揭示STI、SPEI和SCDHI与GPP的相关性及相对贡献。结果表明: 2000—2023年,研究区植被生长季GPP整体表现为非显著上升趋势(0.79 g C·m-2·a-1),SCDHI以0.005·a-1的速率呈非显著下降趋势。研究区84.3%区域的SPEI与GPP之间呈正相关关系,显著负相关面积仅占比0.2%;69%地区的STI与GPP呈负相关,少数地区呈正相关,显著正相关区域占比1.8%;大部分地区的SCDHI与GPP呈负相关关系,显著负相关地区主要分布在中部和西部,面积占比为47%。SPEI在研究区东北部和南部地区对GPP具有显著的主导调控作用;STI在苏尼特左旗西北部和多伦县等地区对GPP的相对贡献较大;GPP在西部和南部地区受复合干热事件的影响较大。本研究对深入了解复合干热事件的形成机理及指导该地区制定防灾减灾策略具有重要意义。

关键词: 复合干热事件, 总初级生产力, 标准化复合干热指数, 锡林郭勒草原

Abstract: We explored the impacts of compound dry-hot events on gross primary productivity (GPP) of the Xilingol Grassland. Based on MODIS GPP data and TerraClimate datasets, including potential evapotranspiration, maximum temperature, and precipitation, from 2000 to 2023 during the vegetation growing season (May to October), we constructed a standardized compound dry and hot index (SCDHI) by using the standardized temperature index (STI) and the standardized precipitation evapotranspiration index (SPEI). We then used Theil-Sen trend analysis and the Mann-Kendall non-parametric test to analyze the spatiotemporal variations of SCDHI and GPP, and used partial correlation analysis and ridge regression analysis methods to quantitatively assess the relationships between STI, SPEI, SCDHI, and GPP, as well as their relative contribution. The results showed that GPP of the study area during the growing season showed a non-significant upward trend (0.79 g C·m-2·a-1) from 2000 to 2023, while the SCDHI decreased at a non-significant rate of 0.005·a-1. In 84.3% of the study area, there was a positive correlation between SPEI and GPP, and the area with a significant negative correlation accounted for only 0.2%. In 69% of the study area, STI was negatively correlated with GPP, while in a few areas, it was positively correlated, with the area of significant positive correlation accounting for 1.8%. In most areas, SCDHI was negatively correlated with GPP, and the significant negative correlation areas were mainly distributed in the central and western parts, accounting for 47% of the area. In the study area, SPEI had the significant dominant regulatory effect on GPP in the northeastern and southern regions, STI had a relatively significant contribution to GPP in the northwestern part of Sunite Left Banner and Duolun County. Meanwhile, GPP in the western and southern regions was greatly affected by compound dry and hot events. This study is of importance for deepening the understanding of the formation mechanisms of compound dry-hot events and guiding the development of disaster prevention and mitigation strategies in the region.

Key words: compound dry-hot event, gross primary productivity, standardized compound drought and heat index, Xilingol Grassland