[1] 周波涛. 全球气候变暖: 浅谈从AR5到AR6的认知进展. 大气科学学报, 2021, 44(5): 667-671 [2] Keenan TF, Williams CA. The terrestrial carbon sink. Annual Review of Environment and Resources, 2018, 43: 219-243 [3] 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响. 中国科学: 地球科学, 2019, 49(9): 1321-1334 [4] 周国逸, 李琳, 吴安驰. 气候变暖下干旱对森林生态系统的影响. 南京信息工程大学学报: 自然科学版, 2020, 12(1): 81-88 [5] Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 2010, 329: 834-838 [6] Zhang Y, Feng XM, Fu BJ, et al. Satellite-observed global terrestrial vegetation production in response to water availability. Remote Sensing, 2021, 13: 1289 [7] Flach M, Brenning A, Gans F, et al. Vegetation modulates the impact of climate extremes on gross primary production. Biogeosciences, 2021, 18: 39-53 [8] Fu Z, Ciais P, Bastos A, et al. Sensitivity of gross primary productivity to climatic drivers during the summer drought of 2018 in Europe. Philosophical Transactions of the Royal Society B-Biological Sciences, 2019, 375: 20190747 [9] Li XY, Li Y, Chen AP, et al. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 2019, 269: 239-248 [10] Granier A, Bréda N, Biron P, et al. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological Modelling, 1999, 116: 269-283 [11] Deng Y, Wang XH, Wang K, et al. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agricultural and Forest Meteorology, 2021, 298: 108307 [12] 徐琳瑜, 孙博文, 王兵. 面向水源保护的秦巴山区生态补偿研究. 环境保护, 2020, 48(19): 33-37 [13] 姜雨璇, 查小春, 纪惠文. 秦巴山区中部生态敏感性时空演变及影响因素. 中山大学学报: 自然科学版, 2022, 61(2): 48-56 [14] 王耀斌, 赵永华, 韩磊, 等. 2000—2015年秦巴山区植被净初级生产力时空变化及其趋动因子. 应用生态学报, 2018, 29(7): 2373-2381 [15] 刘宪锋, 潘耀忠, 朱秀芳, 等. 2000—2014年秦巴山区植被覆盖时空变化特征及其归因. 地理学报, 2015, 70(5): 705-716 [16] 宾昕, 程志刚, 王俊锋, 等. 近17 a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析. 成都信息工程大学学报, 2019, 34(3): 302-307 [17] 陈超男, 朱连奇, 田莉, 等. 秦巴山区植被覆盖变化及气候因子驱动分析. 生态学报, 2019, 39(9): 3257-3266 [18] 香薇, 程志刚, 周波涛, 等. 1975—2016年秦巴山区极端气温事件的空间差异性分析. 气候变化研究进展, 2018, 14(4): 362-370 [19] He MZ, Kimball JS, Yi YH, et al. Impacts of the 2017 flash drought in the US Northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence. Environmental Research Letters, 2019, 14: 074019 [20] Li JG, Wang Y, Liu LL. Responses of the terrestrial ecosystem productivity to droughts in China. Frontiers in Earth Science, 2020, 8: 59 [21] 任志远, 李晶. 陕南秦巴山区植被生态功能的价值测评. 地理学报, 2003, 58(4): 503-511 [22] 张静, 吴洁, 秦公伟, 等. 秦巴山区地表太阳辐射的时空动态及农业气候区划研究. 地理科学, 2020, 40(10): 1742-1752 [23] 刘勇, 王京民, 杨正礼, 等. 秦巴山区林业发展探讨. 西南林业大学学报: 社会科学版, 2017, 1(6): 49-52 [24] Peng SZ, Ding YX, Liu WZ, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11: 1931-1946 [25] 张棋, 许德合, 丁严. 基于SPEI和时空立方体的中国近40年干旱时空模式挖掘. 干旱地区农业研究, 2021, 39(3): 194-201 [26] McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. Procee-dings of the 8th Conference on Applied Climatology, Anaheim, California, 1993: 179-183 [27] 康雄, 曹俊涛, 陈成, 等. 不同趋势法的宁夏长时序植被变化分析. 测绘通报, 2020(11): 23-27 [28] Gampe D, Zscheischler J, Reichstein M, et al. Increa-sing impact of warm droughts on northern ecosystem productivity over recent decades. Nature Climate Change, 2021, 11: 772-779 [29] Zscheischler J, Mahecha MD, Harmeling S, et al. Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecological Informatics, 2013, 15: 66-73 [30] van Oijen M, Beer C, Cramer W, et al. A novel probabilistic risk analysis to determine the vulnerability of ecosystems to extreme climatic events. Environmental Research Letters, 2013, 8: 015032 [31] He QN, Ju WM, Dai SP, et al. Drought risk of global terrestrial gross primary productivity over the last 40 years detected by a remote sensing-driven process model. Journal of Geophysical Research: Biogeosciences, 2021, 126: e2020JG005944 [32] Xiao JF, Zhou Y, Zhang L. Contributions of natural and human factors to increases in vegetation productivity in China. Ecosphere, 2015, 6: 233 [33] Yu YH, Shen YZ, Wang JL, et al. Assessing the response of vegetation change to drought during 2009-2018 in Yunnan Province, China. Environmental Science and Pollution Research, 2021, 28: 47066-47082 [34] 纪瑞鹏, 于文颖, 冯锐, 等. 作物对干旱胁迫的响应过程与早期识别技术研究进展. 灾害学, 2019, 34(2): 153-160 [35] 王青, 严登华, 翁白莎, 等. 流域干旱对淡水湖泊湿地生态系统的影响机制. 湿地科学, 2012, 10(4): 396-403 |