[1] Li XL, Liang SL, Yu GR, et al. Estimation of gross primary production over the terrestrial ecosystems in China. Ecological Modelling, 2013, 261: 80-92 [2] 王媛媛, 谢正辉, 贾炳浩, 等. 基于陆面过程模式CLM4的中国区域植被总初级生产力模拟与评估. 气候与环境研究, 2015, 20(1): 97-110 [3] Chen WZ, Zhu D, Huang CJ, et al. Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 2019, 275: 47-58 [4] Zhu XF, Zhang SZ, Liu TT, et al. Impacts of heat and drought on gross primary productivity in China. Remote Sensing, 2021, 13: 378 [5] 王秋凤, 郑涵, 朱先进, 等. 2001—2010年中国陆地生态系统碳收支的初步评估. 科学通报, 2015, 60(6): 577-590. [6] 张心竹, 王鹤松, 延昊, 等. 2001—2018年中国总初级生产力时空变化的遥感研究. 生态学报, 2021, 41(16): 6351-6362 [7] 侯吉宇, 周艳莲, 刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异. 遥感技术与应用, 2020, 35(5): 1015-1027 [8] Zheng K, Wei JZ, Pei JY, et al. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Science of the Total Environment, 2019, 660: 236-244 [9] Wang J, Wang KL, Zhang MY, et al. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecological Engineering, 2015, 81: 451-461 [10] Piao SL, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 2013, 19: 2117-2132 [11] Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 2015, 53: 785-818 [12] Yu B, Chen F, Chen HY. NPP estimation using random forest and impact feature variable importance analysis. Journal of Spatial Science, 2019, 64: 173-192 [13] Coops NC, Ferster CJ, Waring RH, et al. Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sensing of Environment, 2008, 113: 680-690 [14] 林小丁, 常乐, 冯丹. 2000—2019年青海地区植被总初级生产力遥感估算及时空变化分析. 草业学报, 2021, 30(6): 16-27 [15] 闫敏, 李增元, 田昕, 等. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应. 植物生态学报, 2016, 40(1): 1-12 [16] 叶许春, 杨晓霞, 刘福红, 等. 长江流域陆地植被总初级生产力时空变化特征及其气候驱动因子. 生态学报, 2021, 41(17): 6949-6959 [17] Wang Y, Hu JM, Yang YZ, et al. Climate change will reduce the carbon use efficiency of terrestrial ecosystems on the Qinghai-Tibet Plateau: An analysis based on multiple models. Forests, 2021, 12: 12 [18] 平晓莹, 马俊, 刘淼, 等. 基于VPM模型的长白山自然保护区植被总初级生产力动态变化. 应用生态学报, 2019, 30(5): 1589-1598 [19] 姚炳楠, 陈报章, 车明亮. 鄱阳湖流域植被总初级生产力时空变化特征及其气候驱动因子分析. 植物学报, 2016, 51(5): 639-649 [20] 黄艳, 罗扬. 长三角植被总初级生产力时空动态及其驱动力研究. 南方农业, 2021, 15(20): 199-200 [21] Mo XG, Liu SX, Chen XJ, et al. Variability, tendencies, and climate controls of terrestrial evapotranspiration and gross primary productivity in the recent decade over China. Ecohydrology, 2018, 11: e1951 [22] 王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年气温序列的建立. 应用气象学报, 1998, 9(4): 9-18 [23] 王绍武, 龚道溢, 叶瑾琳, 等. 1880年以来中国东部四季降水量序列及其变率. 地理学报, 2000, 55(3): 281-293 [24] Zheng Y, Shen RQ, Wang YW, et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982-2017. Earth System Science Data, 2020, 12: 2725-2746 [25] Wang SH, Zhang YG, Ju WM, et al. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Science of the Total Environment, 2021, 755: 142569 [26] Peng SZ, Ding YX, Liu WZ, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11: 1931-1946 [27] 朱同斌. 基于CNN深度学习的中国植被总初级生产力估算研究. 硕士论文. 兰州: 西北师范大学, 2021 [28] 王永财, 孙艳玲, 王中良. 1998—2011年海河流域植被覆盖变化及气候因子驱动分析. 资源科学, 2014, 36(3): 594-602 [29] Zhao MS, Running SW. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329: 940-943 [30] Smith AA, Welch C, Stadnyk TA. Assessing the seasona-lity and uncertainty in evapotranspiration partitioning using a tracer-aided model. Journal of Hydrology, 2018, 560: 595-613 [31] 张静, 任志远. 基于MOD16的汉江流域地表蒸散发时空特征. 地理科学, 2017, 37(2): 274-282 [32] 何勇, 董文杰, 郭晓寅, 等. 基于MODIS的中国陆地植被生长及其与气候的关系. 生态学报, 2007, 27(12): 5086-5092 [33] Yao YT, Wang XH, Li Y, et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 2018, 24: 184-196 [34] Yu T, Sun R, Xiao ZQ, et al. Estimation of global vege-tation productivity from global land surface satellite data. Remote Sensing, 2018, 10: 327 [35] 陶波, 李克让, 邵雪梅, 等. 中国陆地净初级生产力时空特征模拟. 地理学报, 2003, 58(3): 372-380 [36] Jin K, Wang F, Li PF. Responses of vegetation cover to environmental change in large cities of China. Sustaina-bility, 2018, 10: 270 [37] 王军邦, 杨屹涵, 左婵, 等. 气候变化和人类活动对中国陆地生态系统总初级生产力的影响厘定研究. 生态学报, 2021, 41(18): 7085-7099 |