欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (6): 1759-1769.doi: 10.13287/j.1001-9332.202506.029

• 研究论文 • 上一篇    下一篇

多维长时序特征数据集支持下的黄河三角洲盐沼植被演替过程监测

伍洪委1,2,3, 宫成澳1,2,3, 宫兆宁1,2,3*, 赵宇欣1,2,3, 邱华昌1,2,3, 陈安康4   

  1. 1首都师范大学, 资源环境与GIS北京市重点实验室, 北京 100048;
    2首都师范大学, 水资源安全北京实验室, 北京 100048;
    3首都师范大学, 城市环境过程和数字模拟国家重点实验室培育基地, 北京 100048;
    4新罗大学研究生院, 韩国釜山 158742
  • 收稿日期:2024-11-21 接受日期:2025-04-23 出版日期:2025-06-18 发布日期:2025-12-18
  • 通讯作者: *E-mail: 2220902205@cnu.edu.cn
  • 作者简介:伍洪委, 男, 2000年生, 硕士研究生。主要从事遥感技术在湿地领域的应用研究。E-mail: wuhongwei101@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0505903)和国家自然科学基金项目(42071396,41971381)

Monitoring of salt marsh vegetation community succession process in Yellow River Delta supported by multidimensional long time-series feature dataset

WU Hongwei1,2,3, GONG Cheng’ao1,2,3, GONG Zhao-ning1,2,3*, ZHAO Yuxin1,2,3, QIU Huachang1,2,3, CHEN Ankang4   

  1. 1Beijing Key Laboratory of Resource Environment and GIS, Capital Normal University, Beijing 100048, China;
    2Beijing Laboratory of Water Resource Security, Capital Normal University, Beijing 100048, China;
    3State Key Laboratory Incubation Base of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China;
    4Graduate School, Silla University, Busan 158742, Korea
  • Received:2024-11-21 Accepted:2025-04-23 Online:2025-06-18 Published:2025-12-18

摘要: 黄河三角洲盐沼植被空间分布异质性强,准确地掌握其历史分布信息对区域生态稳定和可持续发展具有重大意义。本研究基于多源数据构建了长时序时-空-谱多维特征集,采用递归特征消除的随机森林模型精准提取了1996—2022年黄河三角洲典型盐沼植被空间分布信息,分析1996年黄河改道以来原生/入侵盐沼植被群落的演替过程。结果表明: 相较于依赖单一的时序光谱特征,应用时-空-谱多维特征集提取的长时序盐沼植被总体精度提升了8.4%;基于光学和SAR影像的时序空间特征优化了盐地碱蓬稀疏区域和互花米草、芦苇混生区域的分类效果。黄河改道后的潮滩盐沼植被时空分布变化明显,其中,盐地碱蓬群落面积从1996年的91.67 km2退化到2022年的38.11 km2,演替趋势受互花米草入侵影响;互花米草于2008年快速扩张随后大面积分布于现行河道两侧潮滩,2020年群落面积达到最大(51.25 km2),互花米草的入侵扩张对潮滩生境格局产生了一定影响。

关键词: 多源遥感, 多维特征提取, 盐沼植被, 群落演替, 黄河三角洲

Abstract: The spatial distribution of salt marsh vegetation in Yellow River Delta are highly heterogeneous. Accurate information on the historical distribution of salt marsh is of great significance for regional ecological stability and sustainable development. We constructed a long-series temporal-spatial-spectral multidimensional elicitation based on multi-source data, and accurately extracted information on the spatial distribution of typical salt marsh in the Yellow River Delta from 1996 to 2022 using a random forest (RF) model with recursive feature elimination, and further analyzed the succession of the native/invasive salt marsh communities since the diversion of the Yellow River in 1996. Compared to the single temporal spectral feature, the use of a temporal-spatial-spectral multidimensional feature set for extraction improved the overall accuracy of salt marsh vegetation classification by 8.4%. The classification effect of the sparse Suaeda salsa and the mixed area of Phragmites australis and Spartina alterniflora was optimized based on the temporal and spatial features of optical and SAR images. The distribution of salt marsh on the tidal flats after the Yellow River was diverted was obvious. The cover area of S. salsa communities decreased from 91.67 km2 in 1996 to 38.11 km2 in 2022, with the successional trend being influenced by the invasion of S. alterniflora. S. alterniflora was rapidly expanded and then distributed in large areas on the tidal flats on both sides of the current river channel since 2008. The area of the community reached the maximum (51.25 km2) in 2020. The invasion and expansion of S. alterniflora had a certain impact on the habitat pattern of the tidal flats.

Key words: multi-source remote sensing, multidimensional feature extraction, salt marsh vegetation, community succession, Yellow River Delta