[1] IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2001 [2] 谢先芝, 刘奇华, 李新华, 等. 稻田甲烷产生与排放的影响因素及减排措施研究进展. 中国水稻科学, 2024, 38(5): 475-494 [3] 王郑钧, 王邵军, 肖博, 等. 蚂蚁筑巢对热带橡胶人工林土壤甲烷排放季节动态的影响. 应用生态学报, 2024, 35(6): 1695-1704 [4] Hansen JE, Lacis A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature, 1990, 346: 713-719 [5] Christiansen JR, Levy-Booth D, Prescott CE, et al. Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest. Ecosystems, 2016, 19: 1255-1270 [6] Styrsky JD, Eubanks MD. Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B: Biological Sciences, 2007, 274: 151-164 [7] Chiri E, Greening C. Termite mounds contain soil derived methanotroph communities kinetically adapted to elevated methane concentrations. The ISME Journal, 2020: 14: 2715-2731 [8] 康玉娟. 增温下蚯蚓影响沼泽土壤温室气体排放的微生物机制. 硕士论文. 长春: 中国科学院东北地理与农业生态研究所, 2022 [9] Cammeraat LH, Risch AC. The impact of mineral soil ants on soil properties and processes at different scales. Journal of Applied Entomology, 2008, 132: 285-294 [10] Wang SJ, Li JH, Zhang Z, et al. The contributions of underground-nesting ants to CO2 emission from tropical forest soils vary with species. Science of the Total Environment, 2018, 630: 1095-1102 [11] Schumacher E. The Impact of Ants on the Aboveground and Belowground Ecological Network: Field Studies in a Grassland and Experiments with Microcosms. PhD Thesis. Göttingen: Faculty of Mathematics and Natural Sciences, Georg-August-University Göttingen, 2010 [12] Maurer D, Kolb S, Haumaier L, et al. Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils. Soil Biology and Biochemistry, 2008, 40: 3014-3020 [13] Jílková V, Tomáš P, Martina S, et al. Methane and carbon dioxide flux in the profile of wood ant (Formica aquilonia) nests and the surrounding forest floor during a laboratory incubation. FEMS Microbiology Ecology, 2016, 92: fiw141 [14] 曹乾斌, 王邵军, 任玉连, 等. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响. 应用生态学报, 2019, 30(12): 4231-4239 [15] Xu ZH, Hu G. Study on ant community biomass and ecological function in tropical rainforest of Xishuangbanna. Zoological Research, 1999, 20: 441-445 [16] 孙向阳. 北京低山区森林土壤中CH4排放通量的研究. 土壤与环境, 2000, 9(3): 173-176 [17] 魏晋, 徐星凯, 黄耀, 等. 不同区域森林土壤甲烷氧化和乙烯氧化特性及影响机制. 农业环境科学学报, 2008, 27(1): 273-278 [18] 张旭, 牛艳萍. 油浴加热法测定土壤样品中有机碳. 黑龙江科技信息, 2014(10): 77-79 [19] 陈果, 刘岳燕, 姚槐应, 等. 一种测定淹水土壤中微生物生物碳的方法: 液氯熏蒸浸提-水浴法. 土壤学报, 2006, 43(6): 981-988 [20] 赵爽, 王邵军, 杨波, 等. 接种丛枝菌根真菌对云南石漠化土壤呼吸的影响. 生态学报, 2022, 42(21): 8830-8838 [21] 赵林林, 吴志祥, 孙瑞, 等. 土壤有机碳分类与测定方法的研究概述. 热带农业工程, 2021, 45(3): 154-161 [22] 尹献远, 徐霄, 余丽丽, 等. 全自动凯氏定氮仪测定土壤碱解氮的探讨. 浙江农业科学, 2012(8): 1185-1187 [23] 王晋, 庄舜尧, 朱兆良. 不同种植年限水田与旱地土壤有机氮组分变化. 土壤学报, 2014, 14(2): 286-294 [24] 孙福来, 张延霞, 庞祥锋, 等. 长期定位施肥对土壤有机质和碱解氮及冬小麦产量的影响. 土壤通报, 2007, 38(5): 1016-1018 [25] 李洪杰, 刘军伟, 杨林, 等.海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响. 应用与环境生物学报, 2016, 22(4): 599-605 [26] 邓湘琴, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展. 生态环境学报, 2012, 21(3): 577-583 [27] Wang SJ, Wang H, Li JH, et al. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest. Soil Biology and Biochemistry, 2017, 113: 45-52 [28] 曹润, 王邵军, 陈闽昆, 等. 西双版纳热带森林不同恢复阶段土壤微生物生物量碳的变化. 生态环境学报, 2019, 28(10): 1982-1990 [29] 李少辉, 王邵军, 张哲, 等. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响. 应用生态学报, 2019, 30(2): 413-419 [30] 罗达, 史作民, 王卫霞, 等. 南亚热带格木、马尾松幼龄人工纯林及其混交林生态系统碳氮储量. 生态学报, 2015, 35(18): 6051-6059. [31] Cammeraat LH, Willott SJ, Compton SG, et al. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma, 2002, 105: 1-20 [32] 解玲玲, 王邵军, 肖博, 等. 土壤碳库积累与分配对热带森林恢复的响应. 生态学报, 2023, 43(23): 9877-9890 [33] Boots B, Keith AM, Niechoj R, et al. Unique soil microbial assemblages associated with grassland ant species with different nesting and foraging strategies. Pedobiologia, 2012, 55: 33-40 [34] 黄晨琳. 面向力敏传感的导电弹性体复合材料的结构化设计、性能研究及有限元分析. 硕士论文. 北京: 北京化工大学, 2024 [35] MacMahon JA, Mull JF, Crist TO. Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences. Annual Review of Ecology and Systematics, 2000, 31: 265-291 [36] 吴霞, 王晓丽, 乌音嘎, 等. 黄河内蒙古段甲烷通量变化特征及甲烷功能菌群落对通量的影响. 生态学报, 2024, 44(16): 7106-7118 [37] 刘攀, 陆梅, 吕晶花, 等. 蚂蚁筑巢对纳帕海面山土壤碳积累及分配的影响. 北京林业大学学报, 2024, 46(5): 114-125 [38] Bastida F, Torres I, Hernández T, et al. Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dyna-mics. Soil Biology and Biochemistry, 2013, 57: 892-902 [39] Geng J, Cheng SL, Fang HJ, et al. Soil nitrate accumulation explains the nonlinear responses of soil CO2 and CH4 fluxes to nitrogen addition in a temperate needle-broadleaved mixed forest. Ecological Indicators, 2017, 79: 28-36 [40] Xu JB, Jia ZJ, Lin XG, et al. DNA-based stable isotope probing identifies formate-metabolizing methanogenic archaea in paddy soil. Microbiological Research, 2017, 202: 36-42 [41] 张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展. 应用生态学报, 2020, 31(12): 4301-4311 [42] 万冬梅, 陈匆琼, 杨智杰, 等. 模拟降水减少对亚热带杉木人工林不同深度土壤CH4吸收能力的影响. 林业科学研究, 2025, 38(1): 86-94 [43] Bardgett RD, Hobbs PJ, Frostegard A. Changes in soil fungal: bacterial biomass ratios following reductions in nitrogen deposition. Soil Biology and Biochemistry, 1996, 28: 811-818 [44] Conrad R, Rothfuss F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and Fertility of Soils, 1991, 12: 28-32 [45] 王汝南. 模拟大气氮沉降对温带森林土壤温室气体交换通量的影响. 硕士论文. 北京: 北京林业大学, 2012 [46] 车昭碧, 徐鹏飞, 郭亚亚, 等. 不同草地类型的北方蚁巢及周围土壤理化性质特征分析. 草地学报, 2021, 29(5): 982-990 [47] 崔莹莹, 何露露, 肖好燕, 等. 中亚热带人工幼林土壤甲烷通量月动态及影响因素. 亚热带资源与环境学报, 2023, 18(2): 41-49 [48] Vinolas LC, Vallejo VR, Jones DL. Control of amino acid mineralization and microbial metabolism by tempe-rature. Soil Biology and Biochemistry, 2001, 33: 1137-1140 [49] Smith KA, Dobbie KE, Ball BC, et al. Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the glo-bal terrestrial sink. Global Change Biology, 2000, 6: 791-803 [50] Brumme R, Borken W. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Journal of Geophysical Research, 1999, 104: 8161-8171 [51] 郑聚锋, 张平究, 潘根兴, 等. 长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化. 生态学报, 2008, 28(10): 4864-4872 [52] Zhao J, Cai YF, Jia ZJ. The pH-based ecological cohe-rence of active canonical methanotrophs in paddy soils. Biogeosciences, 2020, 17: 1451-1462 [53] Dunfield PF, Yuryev A, Sen A, et al. Methane oxidation by type Ⅰ and type Ⅱ methanotrophs: A comparative study of their growth and methane utilization. Environmental Microbiology, 2007, 9: 1235-1247 [54] Cammeraat LH, Risch AC. The impact of mineral soil ants on soil properties and processes at different scales. Journal of Applied Entomology, 2008, 132: 285-294 [55] Jílková V, Tomáš P, Martina S, et al. Seasonal changes in methane and carbon dioxide flux in wood ant (Formica aquilonia) nests and the surrounding forest soil. Pedobiologia, 2015, 58: 7-12 [56] Boulton AM, Amberman KD. How ant nests increase soil biota richness and abundance: A field experiment. Arthropod Diversity and Conservation, 2006, 15: 69-82 |