欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (7): 2192-2200.doi: 10.13287/j.1001-9332.202507.031

• 研究论文 • 上一篇    下一篇

蚂蚁筑巢对高檐蒲桃热带次生林土壤甲烷氧化动态的影响

张烨1,2, 王邵军1,2*, 殷铭1,2, 郝鑫3, 陆婵3, 颜营林1,2, 郭晓飞3   

  1. 1西南林业大学云南省高原湿地保护修复与生态服务重点实验室, 昆明 650224;
    2国家高原湿地研究中心, 昆明 650224;
    3西南林业大学水土保持学院, 昆明 650224
  • 收稿日期:2024-12-16 接受日期:2025-04-05 出版日期:2025-07-18 发布日期:2026-01-18
  • 通讯作者: *E-mail: shaojunwang2009@163.com
  • 作者简介:张 烨, 女, 1999年生, 硕士研究生。主要从事土壤生态学研究。E-mail: 2772954209@qq.com
  • 基金资助:
    国家自然科学基金项目(32271722,32060281)

Impact of ant nesting on soil methane oxidation dynamics in a tropical secondary forest of Syzygium oblatum

ZHANG Ye1,2, WANG Shaojun1,2*, YIN Ming1,2, HAO Xin3, LU Chan3, YAN Yinglin1,2, GUO Xiaofei3   

  1. 1Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China;
    2National Plateau Wetlands Research Center, Kunming 650224, China;
    3College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
  • Received:2024-12-16 Accepted:2025-04-05 Online:2025-07-18 Published:2026-01-18

摘要: 为探明蚂蚁筑巢对热带森林土壤甲烷(CH4)氧化动态影响的生物与非生物学机制,以西双版纳高檐蒲桃热带次生林群落为研究对象,运用室内甲烷氧化培养方法及气相-色谱法研究蚁巢和非蚁巢土壤甲烷氧化速率的动态特征,分析蚂蚁筑巢引起热带次生林土壤功能微生物群落组成、多样性及土壤理化环境的改变对甲烷氧化速率的影响。结果表明: 1)蚂蚁筑巢显著影响土壤甲烷氧化速率。蚁巢平均土壤甲烷氧化速率(0.32±0.13 pmol CH4·g-1·h-1)相较于非蚁巢(0.24±0.12 pmol CH4·g-1·h-1)提升了36.1%;蚁巢湿季和干季土壤甲烷氧化速率分别是非蚁巢的1.2和1.7倍;蚁巢和非蚁巢土壤甲烷氧化速率均沿土层加深而递减,蚁巢0~5、5~10、10~15 cm土层甲烷氧化速率较非蚁巢分别增加了39.8%、31.6%和36.2%。2)蚂蚁筑巢改变土壤功能微生物组成和多样性。相较于非蚁巢,甲烷氧化菌优势目(根瘤菌目)和优势属(甲基孢囊菌属)相对丰度增幅分别为7.3%和30.6%,甲烷氧化菌Ace、Chao1和Shannon指数提高了17.6%~29.1%。3)蚂蚁筑巢改变了土壤理化性质。相较于非蚁巢,蚁巢土壤微生物生物量碳、氮、有机碳、易氧化有机碳、颗粒有机碳、全氮、水解氮、铵态氮和硝态氮增幅达11.6%~77.6%,而土壤容重和pH降幅达6.8%~21.2%。4)方差分解分析表明,土壤理化因子、微生物生物量、微生物多样性和微生物功能菌分别解释了甲烷氧化速率57.5%、26.8%、18.2%和10.8%的变异。随机森林模型结果表明,土壤微生物生物量碳、氮是影响甲烷氧化速率的主控因子,其对土壤甲烷氧化速率的贡献率分别为16.1%和18.3%。因此,蚂蚁筑巢主要通过介导土壤微生物生物量碳、氮的变化,调控热带次生林土壤甲烷氧化速率。

关键词: 甲烷氧化, 蚂蚁筑巢, 甲烷氧化菌, 热带森林, 西双版纳

Abstract: To explore the underlying biotic and abiotic mechanisms of ant nesting affecting soil methane (CH4) oxidation dynamics, we used indoor methane-oxidation incubation and static chamber-gas chromatography to examine the dynamics of CH4 oxidation in ant nest and adjacent reference soil in Xishuangbanna tropical secondary Syzygium oblatum forest. We investigated the effects of ant-mediated changes in microbial composition and diversity as well as soil properties on spatiotemporal dynamics of CH4 oxidation rate. The results showed that: 1) Ant nesting significantly affected soil CH4 oxidation rate. The average CH4 oxidation rate was 36.1% higher in ant nest (0.32±0.13 pmol CH4·g-1·h-1) than in adjacent soil (0.24±0.12 pmol CH4·g-1·h-1). Furthermore, soil CH4 oxidation rates in ant nest were 1.2- and 1.7-fold of that in the reference soil in wet and dry seasons, respectively. The CH4 oxidation rates in ant nest and reference soil decreased along soil profile. In contrast to the reference soil, the CH4 oxidation rates in 0-5, 5-10 and 10-15 cm layers increased by 39.8%, 31.6% and 36.2%, respectively. 2) Ant nesting changed the composition and diversity of soil functional microorganism. In contrast to adjacent reference soil, relative abundances of dominant order (Rhizobiales) and genus (Methylocystis) in ant nest increased by 7.3% and 30.6%, respectively. Moreover, Ace, Chao1, and Shannon indices increased by 17.6%-29.1%. 3) Ant nes-ting changed soil physicochemical properties. Compared with the adjacent reference soil, the increases in microbial biomass carbon (MBC) and nitrogen (MBN), soil organic carbon, readily oxidizable organic carbon, particulate organic carbon, total nitrogen, hydrolyzable nitrogen, ammonium nitrogen, and nitrate nitrogen ranged from 11.6% to 77.6%, while decreases in soil bulk density and pH were between 6.8% and 21.2%. 4) Variance decomposition analysis showed that soil physicochemical factors, microbial biomass, diversity and functional bacteria accounted for 57.5%, 26.8%, 18.2% and 10.8% of the variation in soil CH4 oxidation rate, respectively. The results of random forest model indicated that MBC and MBN were the primary influencing factors of CH4 oxidation rate, with contribution rates of 16.1% and 18.3%, respectively. The ant nesting could regulate the CH4 oxidation in tropical secondary forests, primarily through mediating the variations in MBC and MBN.

Key words: methane oxidation, ant nesting, methane-oxidizing bacteria, tropical forest, Xishuangbanna